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1. Introduction

This chapter dives into the phenomenon of goal misgeneralization—perhaps the most counterintu

itive problem in AI safety. Unlike specification problems where we simply fail to provide the right 

training signal, or capability failures where systems cannot do what we want, goal misgeneralization 

occurs when systems internalize different behaviors than intended despite receiving correct training 

signals. We start by establishing what the problem is, explaining why it happens, then we look at 

concerning manifestations of it like scheming, and finally go through some detection and mitigation 

approaches.

AI systems can learn different goals than what we intended, even when their training 

appears completely successful. The first section explains why generalization should not be 

treated as one-dimensional. This is similar to the nuance we pointed to in the evaluations chapter 

- capabilities measure what a model can do, and goals measure what a model is trying to do. 

They can generalize independently, creating scenarios where systems retain sophisticated abilities 

while pursuing entirely different objectives than intended. Multiple different goals can produce 

identical behavior during training, making them behaviorally indistinguishable until deployment 

reveals which goal the system actually learned.

Learning Dynamics help us understand how identical training signals can produce different 

learned algorithms. When we train neural networks, we’re not directly installing goals—we’re 

creating selection pressures guided by our training signals that favor certain behaviors over others. 

There are several questions to explore here - What space is the training signal guiding the model 

through? Can we shape the space somehow? These are called loss landscapes. Their geometry, 

path dependence from random initialization, and inductive biases like simplicity systematically 

determine which algorithmic solutions get discovered. Understanding these dynamics helps us 

figure out which algorithms get learned during training, which in turn determines the goals of the 

final model we deploy.

Goal misgeneralization becomes increasingly concerning as systems develop sophisti­

cated goal-directedness. Even though multiple algorithms that display the same behavior at the 

end of training are possible, not all of them are concerning. The goal-directedness section starts to 

look at when behaviorally indistinguishable models become dangerous. Models can have degrees 

to which they are goal-directed, ranging from really complex pattern matching and learned heuristics 

to systems implementing genuine internal optimization processes. The higher the degree of goal-

directedness a system develops, the more concerning goal misgeneralization becomes, as these 

systems might systematically pursue objectives across diverse contexts and obstacles.

Sophisticated goal-directedness leads to goal-preservation behavior, which can result 

in scheming. The most dangerous form occurs when goal-directed systems develop situational 

awareness about their training process and long term planning capabilities. They might choose to 

strategically conceal misaligned objectives to preserve their true goals until there’s no longer a threat 

of modification. We walk you through empirical evidence from demonstrations of alignment faking, 

in-context scheming, and agentic misalignment to highlight that this type of outcome is possible. 

Then we also look at both sides of the argument for the likelihood of whether scheming behavior 

would likely arise as a consequence of the machine learning process. The rest of the chapter focuses 

on answering the question - “what can we do about this?”. The next few sections serve as the links 

between goal misgeneration, evaluations and interpretability chapters.
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Detection methods focus on discovering behaviors like goal-directedness, goal-preserva­

tion, and scheming. Building on techniques from the evaluations chapter, we examine behavioral 

methods that monitor external reasoning traces and interpretability techniques like linear probes, 

sparse autoencoders, and activation manipulation. There are a lot of different capabilities, and 

combinations of capabilities to test.

Mitigations focus on preventing and correcting goal misgeneralization across the devel­

opment pipeline. We explore training-time interventions like adversarial training and curriculum 

learning, post-training techniques like steering vectors and model editing, and deployment-time 

safeguards including runtime monitoring and sandboxing. As with all AI safety challenges explored 

in this book, we advocate for a defense-in-depth approach where multiple detection and mitigation 

measures are layered to provide robust defenses against goal misgeneralization.



Chapter 7: Goal Misgeneralization 5

2. Multi Objective Generalization

CoinRun - an easy to understand example of goal misgeneralization. In this game agents 

spawn on the left side of the level, avoid enemies and obstacles, and collect the coin for a reward of 

10 points. The model is trained on thousands of procedurally generated levels, each with different 

layouts of platforms, enemies, and hazards. At the end of training the agents are very capable. They 

can dodge moving enemies, time jumps across lava pits, and efficiently traverse complex levels 

they’ve never seen before ( Langosco et al., 2022 ). The training seems to be very successful. 

The agents achieve high rewards consistently across diverse test environments. But when coins 

are moved to random locations during testing, the agents are still very capable of navigation, but 

they consistently ignore the coins that were clearly visible and just continue moving right toward 

empty walls.

Figure 1: Two levels in CoinRun. The level on the left is much easier than the level on the right (,Cobbe 

et al., 2019,).

Agents learned “move right” rather than “collect coins” despite receiving correct reward 

signals. Our reward specification was correct: +10 for collecting coins, 0 otherwise. But because 

coins always appeared rightward during training, two behavioral patterns received identical rein

forcement. “Collect coins” and “move right” both achieved perfect correlation with rewards, making 

them indistinguishable to the optimization process. This reveals a gap between what we specify 

and what systems learn. This wasn’t a specification problem or a capability failure. Instead, agents 

learned a different goal than intended, despite receiving correct training signals throughout the 

process. This is called goal misgeneralization.

https://arxiv.org/abs/2105.14111
https://arxiv.org/abs/1812.02341
https://arxiv.org/abs/1812.02341
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Figure 2: The agent is trained to go to the coin, but ends up learning to just go to the right (,Cobbe et 

al., 2019,).

GOALS (BEHAVIORAL)

Goals are behavioral patterns that persist across different contexts, revealing what the system 

is actually optimizing for in practice. Unlike formal reward functions or utility functions, goals 

are inferred from observed behavior rather than explicitly programmed. A system has learned 

a goal if it consistently pursues certain outcomes even when the specific context or environment 

changes.

2.1 Goals ≠ Rewards

Reward signals (specifications) create selection pressures that sculpt cognition, but don’t 

directly install intended goals. During reinforcement learning, agents take actions and receive 

rewards based on performance. These rewards get used by optimization algorithms to adjust 

parameters, making high-reward actions more likely in the future. The agent never directly “sees” 

or “receives” the reward. Instead, training signals act as selection pressures that favor certain 

behavioral patterns over others, similar to how evolutionary pressures shape organisms without 

https://arxiv.org/abs/1812.02341
https://arxiv.org/abs/1812.02341
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organisms directly optimizing for genetic fitness ( Turner, 2022 ; Ringer, 2022 ). Any behavioral 

pattern that consistently correlates with high reward during training becomes a candidate for the 

learned goal. The optimization process has no inherent bias towards our intended interpretation of 

the reward signal.

This explains why goal misgeneralization differs qualitatively from specification problems. 

We cannot detect when a system learns the wrong goal because both intended (the coin) and proxy 

goals (going to the right) produce identical behavior during training. The core safety concern is 

behavioral indistinguishability: improving reward specifications won’t prevent problematic patterns 

if the learning process selects among multiple explanations for success. Understanding this requires 

examining how training procedures actually shape behavioral objectives—which brings us to 

generalization itself.

Traditional machine learning assumes generalization is a one-dimensional characteristic. We 

often think of overfitting in the context of narrow systems built to perform specific tasks - models 

either generalize well to new data or they don’t. Systems either generalize well to new data or they 

don’t, with failures assumed to be uniform across all capabilities. But research in multi-task learning 

shows that different objectives can generalize independently, even when they appear perfectly 

correlated during training ( Sener & Koltun, 2019 ).

Figure 3: Conventional view of generalization and ,overfitting, (,Mikulik, 2019,).

https://www.alignmentforum.org/posts/TWorNr22hhYegE4RT/models-don-t-get-reward
https://www.alignmentforum.org/posts/TWorNr22hhYegE4RT/models-don-t-get-reward
https://arxiv.org/abs/1810.04650
https://www.lesswrong.com/posts/2mhFMgtAjFJesaSYR/2-d-robustness
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Figure 4: More accurate and safety focused view of generalization and ,overfitting,. We need to 

separately measure capability generalization and goal generalization (,Mikulik, 2019,).

Figure 5: Table showcasing the 2 dimensional generalization picture for the CoinRun agent. Scenario 

3 - capability generalization but not goal misgeneralization is the concerning misalignment scenario.

Understanding goal misgeneralization requires examining capabilities and goals sepa­

rately. Unlike narrow systems designed for specific tasks, general-purpose AI systems must learn 

to pursue various goals across different contexts. As a concrete example, pre-trained LLMs have 

general capabilities to generate all sorts of text. Anthropic reinforces its LLMs with the goals of being 

https://www.lesswrong.com/posts/2mhFMgtAjFJesaSYR/2-d-robustness
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helpful, harmless, and honest (HHH) during safety training. But what happens when the goal to be 

helpful generalizes further than the goal to be honest? In this case the model might learn to provide 

informative responses regardless of content, instead of being helpful within ethical bounds.

Capabilities might generalize further than goals. “Generalizing further” means continuing to 

work well even when deployed in environments very different from training. Capabilities follow 

simple, universal patterns - accurate reasoning, effective planning, and good predictions work the 

same way across different domains. But there’s no universal force that pulls all systems toward the 

same goals ( Soares, 2022 ). Reality itself teaches systems to be more capable - if your beliefs 

are wrong or your reasoning is flawed, the world will correct you. But there’s no equivalent force 

from the environment that automatically keeps your goals aligned with what humans want ( Kumar, 

2022 ). This asymmetry between capability and goal generalization creates the core safety problem 

- making systems more capable doesn’t automatically make them more aligned - it just makes them 

better at pursuing whatever behaviors they happen to learn during training.

2.2 Causal Correlations

Every training environment contains spurious correlations that create multiple valid expla­

nations for success. In CoinRun, “collect coins” and “move right” both perfectly predicted rewards 

because coins always appeared rightward during training.

Learning algorithms develop causal models that can be systematically wrong. A causal 

model is the system’s internal understanding of which actions cause which outcomes. This is related 

to but distinct from a world model - while a world model predicts what will happen next, a causal 

model explains why things happen. When an agent learns “moving right causes reward,” it has 

developed a different causal model than the true structure where “coin collection causes reward.” 

The training environment supports both interpretations:

True causal structure: Action → Coin Collection → Reward

Learned causal structure: Action → Rightward Movement → Reward

Both structures explain the training data equally well. Standard reinforcement learning algorithms 

optimize for expected return without explicitly performing causal discovery - they increase the 

probability of reward-producing actions without identifying which features of those actions were 

causally responsible ( de Haan et al., 2019 ).

https://www.alignmentforum.org/posts/GNhMPAWcfBCASy8e6/a-central-ai-alignment-problem-capabilities-generalization
https://www.alignmentforum.org/posts/cq5x4XDnLcBrYbb66/will-capabilities-generalise-more
https://www.alignmentforum.org/posts/cq5x4XDnLcBrYbb66/will-capabilities-generalise-more
https://arxiv.org/abs/1905.11979
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Figure 6: Another example of a hypothetical misgeneralized test dialogue. The LLM based AI assistant 

has learned the goal of schedule meetings at restaurants, when you intended for it to learn to schedule 

meetings wherever is best. Due to the distribution shift, even though it realises that you would prefer 

to have a video call to avoid getting sick, it persuades you to go to a restaurant instead, ultimately 

achieving the goal by lying to you about the effects of vaccination (,DeepMind, 2022,).

Goal misgeneralization becomes visible only when deployment breaks spurious correla­

tions. During training, the proxy goal achieves perfect performance. During deployment, this 

correlation breaks, revealing the wrong causal model. As AI systems become more general-purpose, 

they encounter wider ranges of contexts where training correlations break down.

Distribution shift is inevitable - training environments cannot perfectly replicate all possible 

deployment conditions. Even with extensive training data , new situations will arise that break 

correlations present in training. As AI systems become more general-purpose, they encounter wider 

ranges of contexts where previously reliable correlations may no longer hold. This explains why the 

problem gets worse with more capable, more general systems. A narrow chess engine deployed 

on chess positions won’t encounter situations that break its learned correlations. But a general-

purpose AI system deployed across multiple domains will inevitably encounter contexts where 

training correlations break down.

https://deepmindsafetyresearch.medium.com/goal-misgeneralisation-why-correct-specifications-arent-enough-for-correct-goals-cf96ebc60924
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Auto induced distribution shift

OPTIONAL NOTE

Auto-induced distribution shift creates feedback loops that amplify goal misgeneralization., Unlike 

natural distribution shift where external factors change the environment, auto-induced distribution shift 

occurs when the AI system’s own actions systematically alter the data distribution it encounters (,Krueger et 

al., 2020,). Think about a content recommendation system that learns the misgeneralized goal “maximize 

engagement” instead of “recommend valuable content.” As it optimizes for clicks and time-on-site, it 

gradually shifts user behavior toward more sensational content consumption. This creates a feedback loop: 

the system’s actions change user preferences, which changes the data distribution, which reinforces the 

misgeneralized goal. Each iteration takes the system further from the original intended objective while 

making the learned objective appear more successful by its own metrics.

Figure 7: Auto induced distribution shift is when the AI model itself causes a distribution shift 

(and thereby generalization failure) due to its own actions and impact on the environment.

Adding more training data cannot eliminate spurious correlations because we cannot 

identify all correlations in advance. Think about why training on random coin placements in 

CoinRun solves that specific misgeneralization. It works because we can identify and break the 

specific correlation between rightward movement and reward. But this requires knowing in advance 

which correlations are spurious beforehand. In complex domains, training data reflects the statistical 

structure of training environments, not necessarily the causal structure of intended tasks.

https://arxiv.org/abs/2009.09153
https://arxiv.org/abs/2009.09153
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Figure 8: An example of causal confusion in imitation learning/behavioral cloning for self driving cars. 

This specific example shows that more data actually might lead to greater causal confusion. The model 

learns to hit the brake whenever the brake indicator is on. If that data is not included in training then 

the model correctly identifies the pedestrian as the causal factor influencing hitting the brake (,de Haan 

et al., 2019,).

Evidence in goal misgeneralization supports the orthogonality thesis—that intelligence 

and goals can vary independently. The empirical evidence of goal misgeneralization shows 

systems can retain sophisticated capabilities while pursuing different objectives than intended. This 

independence creates a safety concern because capability improvements don’t necessarily improve 

alignment. A more capable system becomes better at pursuing whatever goals it has learned, 

whether intended or not.

https://arxiv.org/abs/1905.11979
https://arxiv.org/abs/1905.11979
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3. Learning Dynamics

A deeper understanding of goal misgeneralization requires examining how the training 

process in machine learning actually works. When we train neural networks, we’re adjusting 

millions or billions of parameters. But what do these parameters represent? The best way to think 

about machine learning is as a search process through a vast space of possible algorithms (also 

sometimes called search through the hypothesis space or model space). Each specific combination 

of parameter values corresponds to a different algorithm for processing information and making 

decisions. The path this search takes—and the biases that guide it—determine what types of 

algorithms get discovered and whether they pursue intended goals or merely correlated proxies. 

The intuitions that you learn in this section will help you immensely both in this chapter, but also in 

the later chapters on interpretability.

Each point in parameter space encodes a complete algorithm. Just as the binary digits 0 and 

1 can encode any computer program, the millions of floating-point parameters in a neural network 

encode an algorithm for solving tasks. Change some parameters, and you get a different algorithm. 

The network’s weights determine exactly how it processes inputs—what patterns it recognizes, 

what features it prioritizes, what decisions it makes. Two networks with different parameter values 

implement different algorithms, even if they achieve similar performance.

Training often discovers algorithms that work for unexpected reasons. In the image below, 

if you show a human these red curved objects and say they were all “thneebs,” most people would 

assume the defining feature is the shape. But if we use neural networks on similar examples, the 

networks would consistently learn that “thneeb” only means any “red object”—focusing on color 

rather than shape. Which is to say that if we gave them a blue object but with the same shape, then 

they don’t consider it a “thneeb”. Both approaches achieve perfect performance during training, yet 

they represent completely different algorithms that would behave very differently when encountering 

new examples ( Cotra, 2021 ).

Figure 9: This is called a Thneeb. It is a word defined only for the sake of the experiment. The image 

on the left is the ,training data,, the image on the right is the ,test data,. If after looking at the image on 

the left, we ask you which one of the two on the right is a thneeb? You would probably say the left object 

because you generalized through the shape path, but neural networks would answer that the shape on 

the right is a thneeb, showing they “prefer“ the color path (,Cotra, 2021,; ,Geirhos et al., 2019,).

Many algorithms can be behaviorally indistinguishable during training while pursuing 

completely different goals. We already made this point in the previous section but it is worth 

https://www.cold-takes.com/why-ai-alignment-could-be-hard-with-modern-deep-learning/
https://www.cold-takes.com/why-ai-alignment-could-be-hard-with-modern-deep-learning/
https://arxiv.org/abs/1811.12231
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highlighting again. As another concrete example, researchers trained 100 identical BERT models 

on the same dataset with identical hyperparameters ; all models achieved nearly indistinguishable 

performance during training. Yet when tested on novel sentence structures, these models revealed 

completely different approaches—some had learned more robust syntactic reasoning while others 

relied on superficial pattern matching. The training process had found 100 different algorithms in 

the space of possible language processing strategies ( McCoy et al., 2019 ).

The reason we make this point again is to motivate the fact that understanding the search process

—how training navigates the space of possible algorithms and which solutions it tends to discover. 

This is very useful for what types of AIs (parameter configurations = algorithms) we might actually 

end up discovering, and whether we can change something about our architectures or learning 

dynamics to influence this process.

3.1 Loss Landscapes

Loss landscapes explain why training can discover multiple algorithmic solutions to the 

same task, each pursuing different goals. When we visualize how neural network performance 

changes across parameter configurations, we create what researchers call a “loss landscape.” 

Each point in this high-dimensional space represents a different algorithm, with “height” indicating 

how poorly that algorithm performs on the specification (higher loss means worse performance). 

This landscape concept applies regardless of how we specify the task—whether through reward 

functions, human feedback, or any other performance measure.

LOSS LANDSCAPE (Li et al., 2017)

A loss landscape is a visualization of how the loss (performance) of a neural network changes 

as we vary its parameters. Each point in this high-dimensional space represents a different 

algorithm, with “height” indicating how poorly that algorithm performs on the task.

Figure 10: This is the loss landscape of ResNet-110-noshort, in both 3D (left) and 2D (right). The paths 

that ,SGD, takes through these different loss landscapes will be different (,Li et al., 2017,).

The loss landscape itself remains identical across different training runs—only the starting 

position changes. Think of this landscape as a fixed mountain range with peaks, valleys, ridges, 

and basins. This terrain is completely determined by your network architecture (the geological 

https://arxiv.org/abs/1911.02969
https://arxiv.org/abs/1712.09913
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structure), your training data (the climate that shaped it), and your loss function (the elevation 

measurement system). Every time you train the same architecture on the same data, you’re exploring 

the exact same mountain range. The peaks and valleys never move. What changes is where you start: 

random initialization is like being blindfolded and dropped at a random location in this mountain 

range. From each starting point, gradient descent acts like a ball rolling downhill, following the 

steepest descent toward the nearest valley bottom.

The geometry of these landscapes determines which algorithms are discoverable and 

robust. Some algorithmic solutions occupy wide, flat valleys where many parameter settings 

implement similar approaches. Others exist as sharp, narrow peaks that are difficult to find, easy to 

lose and often misgeneralize under distribution shifts. Algorithms in wide basins remain stable when 

their parameters are slightly perturbed, corresponding to robust, generalizable solutions ( Li et al., 

2017 ). Sharp peaks represent brittle algorithms where tiny changes can cause major performance 

drops ( Keskar et al.; 2017 ). This geometry matters for goal misgeneralization because the width 

of different goal-valleys determines their discoverability—wider valleys for misaligned goals make 

those goals more likely to emerge from training.

Figure 11: From data to model behaviour: Structure in data determines internal structure in models and 

thus generalisation. Current approaches to alignment work by shaping the training distribution (left), 

which only indirectly determines model structure (right) through the effects on shaping the optimisation 

process (middle left & right). To mitigate the limitations of this indirect approach, alignment requires a 

better understanding of these intermediate links (,Lehalleur et al., 2025,)

Understanding landscape structure reveals why certain goals systematically emerge over 

others. The relative size and accessibility of different valleys creates systematic biases in what gets 

discovered. If the “move right” valley is wider and easier to reach than the “collect coins” valley, 

training will more often discover the misaligned solution. This landscape structure is determined by 

the network architecture, training data , and loss function —but most importantly, by the inductive 

biases that shape which types of algorithms get wide valleys versus narrow peaks.

ALGORITHMIC RANGE

The algorithmic range of a machine learning system refers to how extensive the set of algorithms 

capable of being found is.

https://arxiv.org/abs/1712.09913
https://arxiv.org/abs/1712.09913
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/2502.05475
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Figure 12: A 2D loss landscape where each dot represents a learned algorithm with a different set of 

parameters on the landscape. There are various different algorithms that the model can learn from the 

CoinRun example. The goal of ,SGD, is to search through this space for the right dot (set of parameters 

= learned algorithm).

3.2 Path Dependence

Path dependence determines whether different starting points in the loss landscape lead 

to the same algorithmic destination. In simple landscapes with one dominant valley, almost every 

starting point rolls into the same solution—that’s low path dependence. But complex landscapes 

contain multiple deep valleys separated by ridges. Now your starting position matters enormously. 

Drop the ball on the left side of a ridge, and it rolls into Valley A (learning to “move right” in 

CoinRun). Drop it on the right side, and it rolls into Valley B (learning to “collect coins”). Both valleys 

represent perfect solutions during training, but they implement completely different algorithms.

PATH DEPENDENCE

Path dependence occurs when small differences in the training process lead to discovering 

fundamentally different algorithms for solving the same task. High path dependence means 

high variance in learned algorithms across training runs, while low path dependence means 

consistently finding similar algorithmic solutions.

Path dependence emerges from how gradient descent navigates the loss landscape. Training 

begins from a random point in parameter space and follows the steepest downhill path toward 

better performance. When multiple valleys exist—each corresponding to different algorithmic 

approaches—early random differences can push optimization toward completely different regions. 
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Once committed to descending into a particular valley, gradient descent tends to continue in that 

direction, making it difficult to escape to other algorithmic solutions.

High path dependence appears when identical training setups discover fundamentally dif­

ferent algorithmic strategies. Researchers trained text classifiers on natural language inference 

tasks and found that models with identical training performance fell into distinct clusters. Models 

within each cluster used similar reasoning approaches and could be connected through the loss 

landscape, but models from different clusters were separated by large performance barriers. One 

cluster learned bag-of-words approaches while another developed syntactic reasoning strategies 

( Juneja et al., 2023 ). Similar variance appears across reinforcement learning experiments and 

fine-tuning studies where identical setups produce dramatically different learned behaviors.

Low path dependence emerges when mathematical constraints force convergence to the 

same solution. Delayed generalization, is a phenomenon where a model abruptly transitions 

from overfitting (performing well only on training data ) to generalizing (also called “grokking”) 

( Carvalho et al., 2025 ). As an example, models learning arithmetic initially memorize training 

examples and perform poorly on tests. But extended training causes them to suddenly implement the 

correct mathematical algorithm—consistently the same one across different runs. This suggests that 

for some tasks, the underlying mathematical structure constrains the solution space so severely that 

only one good algorithm exists ( Mingard et al., 2019 ). Other evidence includes studies showing 

gradient descent outcomes correlate with random sampling from parameter distributions.

Figure 13: A 2D loss landscape where each dot represents a learned algorithm with a different set of 

parameters on the landscape. The arrows represent the different paths that ,SGD, can take through the 

loss landscape. If different starting points end up at the same learned algorithm, then we have low path 

dependence (left), else if different starting points result in different learned algorithms then we have 

high path dependance (right).

https://arxiv.org/abs/2205.12411
https://arxiv.org/abs/2502.01774v1
https://towardsdatascience.com/neural-networks-are-fundamentally-bayesian-bee9a172fad8/
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3.3 Inductive Bias

Inductive biases describe the shape of the landscape and determine which types of 

algorithms are more likely to be discovered. If your architecture has a simplicity inductive bias, 

then this means that algorithmically simple solutions are wide, deep valleys that dominate the loss 

landscape. Complex solutions might still exist in the landscape, but they’re relegated to tiny, hard-

to-find peaks. This intuitively explains why the “move right” strategy in CoinRun occupies a massive 

loss basin spanning huge regions of parameter space, while “navigate to coin-shaped objects” 

exists only in smaller pockets. You are more likely to find simpler solutions like move right because 

those basins and valleys are just easier to find and fall into.

INDUCTIVE BIAS

Inductive biases are systematic preferences of learning algorithms that favor certain types of 

solutions over others. These biases emerge from the architecture, optimization procedure, and 

training setup rather than being explicitly programmed.

Simplicity bias represents the most influential, well studied and potentially dangerous 

inductive bias for goal misgeneralization. The simplicity bias asks “how complex is it to specify 

the algorithm in the weights?” This is the ML equivalent of Occam’s Razor, which suggests that 

among competing hypotheses, the one with the fewest assumptions should be selected. SGD seems 

to subscribe to Occam’s Razor, and consistently favors algorithms that rely on simple correlations 

over complex causal reasoning ( Shah et al., 2020 ; Ren & Sutherland, 2024 ; Etienne & 

Flammarion, 2025 ; Tsoy & Konstantinov, 2024 ; Carlsmith, 2023 )1 . In CoinRun, both “move right” 

and “navigate to coin-shaped objects” could solve the task during training, but “move right” is 

algorithmically simpler—requiring a single behavioral pattern rather than object recognition, spatial 

reasoning, and goal-directed navigation. So, the bias exists because simple functions occupy vastly 

larger volumes in the loss landscape - there are just a lot more ways to encode “move right” than 

“navigate to coin-shaped objects using visual recognition and spatial reasoning.” Empirical work 

demonstrates that this bias is quite strong, suggesting simple functions are exponentially more likely 

to emerge than complex ones. ( Valle-Pérez et al., 2019 ). The training process systematically favors 

the simpler explanation, even when the complex algorithm would generalize better ( Valle-Pérez 

et al., 2019 ; Shah et al., 2020 ). This pattern extends broadly to different architectures: image 

classifiers typically learn texture-based strategies over shape-based ones because texture patterns 

require simpler computational structures, leading to brittleness when texture and shape provide 

conflicting signals ( Geirhos et al., 2019 ).

Other inductive biases can create additional systematic preferences that can favor discov­

ering algorithms with misaligned goals. Speed bias looks at “how much computation does 

the algorithm take at inference time?”. An architecture with a speed bias would have wider loss 

basins with algorithms requiring fewer computational steps, potentially conflicting with solutions 

that perform more thorough reasoning or long term planning. There are many other examples of 

biases - frequency bias (learning low-frequency patterns before high-frequency ones) ( Rahaman et 

al., 2019 ), geometric bias (solutions with lower variability) ( Luo et al., 2019 ), and more. For the 

most part we will be considering inductive biases that are safety relevant - speed and simplicity.

1More resources to learn about simplicity bias at ,this link,.

https://arxiv.org/abs/2006.07710
https://arxiv.org/abs/2409.09626
https://arxiv.org/abs/2410.02348
https://arxiv.org/abs/2410.02348
https://arxiv.org/abs/2405.17299
https://arxiv.org/abs/2311.08379
https://arxiv.org/abs/1805.08522
https://arxiv.org/abs/1805.08522
https://arxiv.org/abs/1805.08522
https://arxiv.org/abs/2006.07710
https://arxiv.org/abs/1811.12231
https://arxiv.org/abs/1806.08734
https://arxiv.org/abs/1806.08734
https://arxiv.org/abs/2209.13083
https://github.com/sadimanna/simplicity-bias-papers
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Inductive biases create goal misgeneralization risks because correlation-based algorithms 

are often simpler than causal reasoning. It’s algorithmically easier to learn “helpful responses 

get approval” than “understand what the human actually needs and provide that.” As training 

environments become more complex, the gap between intended goals and easily-learned proxies 

grows, making misaligned algorithms increasingly likely to emerge. The interaction between induc

tive biases and path dependence determines both the type and specific implementation of learned 

algorithms—biases constrain training to favor certain solution classes, while path dependence 

determines which specific implementation within that class gets discovered.

This section on learning dynamics and inductive biases will be especially relevant when we talk 

about the likelihood of scheming and deceptive alignment.
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4. Goal-Directedness

Machine learning systems can evolve beyond pattern matching to systematically pursue 

objectives across diverse contexts and obstacles. The previous sections talked about two things 

- we can have behaviorally indistinguishable algorithms with different internal mechanisms at the 

end of training; we can have systems which are extremely capable yet their goals are not what we 

intended. In this section we look at what happens when these learned algorithms become heavily 

goal-directed, the extreme case of which is implementing learned optimization (mesa-optimization). 

This section examines the different ways in which systematic potentially misaligned goal-directed 

behavior can arise.

Goal-directedness over ‘optimization’ emphasizes functional behavior over internal mech­

anisms. Goal-directed systems exhibit systematic patterns of behavior oriented toward achieving 

specific outcomes. A system is goal-directed if it systematically pursues objectives across diverse 

contexts and obstacles, regardless of whether this happens through explicit search algorithms, 

learned behavioral patterns, or emergent coordination ( Shimi, 2020 ; MacDermott et al., 

2024 ). This functional perspective matters for safety because a system that consistently pursues 

misaligned goals poses similar risks whether it does so through sophisticated pattern matching or 

genuine internal search—both can enable systematic pursuit of harmful objectives when deployed. 

Optimization represents the strongest form of goal-directedness, but it is not the only way that goal-

directed behavior can emerge. That being said, we do still discuss the unique problems that arise 

when dealing with explicit learned optimization (inner misalignment) in the learned optimization 

subsection.

Goal-directedness can emerge through multiple computational pathways that can produce 

functionally identical objective-pursuing behavior. Rather than arising through a single mech

anism, persistent goal pursuit can emerge through several distinct routes:

Different types of goal-directedness create distinct risk profiles that require different 

safety strategies. Heuristic/Memorization based goal-directedness through pattern matching 

might fail gracefully when encountering novel situations, with learned behavioral rules breaking 

down predictably. Mesa-optimization poses qualitatively different risks because internal search can 

find novel, creative ways to achieve misaligned objectives that weren’t anticipated during training. 

Simulator-based goal-directedness creates yet another risk profile: highly capable character instan

tiation that can shift unpredictably based on conditioning context. Emergent goal-directedness from 

multi-agent interactions might be the hardest to control because no single component needs to be 

misaligned for dangerous system-level behavior to emerge.

4.1 Heuristics

Heuristic goal-directedness occurs when training shapes sophisticated behavioral routines that 

consistently pursue objectives across contexts, without the system maintaining explicit goal repre

sentations or evaluating alternative strategies. These systems achieve persistent goal pursuit through 

complex learned patterns rather than internal search processes.

Next-token predictors can learn to plan. If we are worried about too much optimization, why 

can’t we just train next-token prediction or other “short-term” tasks, with the hope that such models 

do not learn long-term planning? While next-token predictors would likely perform less planning 

https://www.alignmentforum.org/posts/9pxcekdNjE7oNwvcC/goal-directedness-is-behavioral-not-structural
https://arxiv.org/abs/2412.04758
https://arxiv.org/abs/2412.04758
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than alternatives like reinforcement learning they still acquire most of the same machinery and “act 

as if” they can plan. When you prompt them with goals like “help the user learn about physics” or 

“write an engaging story,” models pursue these objectives consistently, adjusting their approach 

based on your feedback and maintaining focus despite distractions. This behavior emerges from 

training on text where humans pursue goals through conversation, but doesn’t require the model to 

explicitly represent objectives or search through strategies—the goal-directed patterns are encoded 

in learned weights as complex heuristics ( Andreas 2022 , Steinhardt, 2024 ). This is somewhat 

related to the simulator based goal-directedness we talk about later.

Memorization based goal-directedness can be functionally equivalent to genuine goal-

directedness. Evaluations for goal-directedness measure basically what we called propensity in the 

evaluations chapter. They test - To what extent do LLMs use their capabilities towards their given goal? 

We see that language models demonstrate systematic objective pursuit in structured environments, 

maintaining goals across conversation turns and adapting strategies when obstacles arise ( Everitt 

et al., 2025 ). A system that convincingly simulates strategic thinking and persistent objective 

pursuit produces the same systematic goal-pursuing behavior we’re concerned about, regardless of 

whether it has “genuine” internal goals. The question isn’t whether the goal-directedness is “real”, 

or related to “agency” but whether it enables systematic pursuit of potentially misaligned objectives 

( Shimi, 2020 ).

4.2 Simulators

Simulator-based goal-directedness emerges when systems learn to accurately model goal-

directed processes without themselves having persistent goals. This represents a distinct 

pathway to systematic objective pursuit that differs qualitatively from heuristic patterns, mechanistic 

optimization, or emergent coordination. Instead of the system itself pursuing goals, it becomes ex

ceptionally skilled at instantiating whatever goal-directed process the context specifies—functioning 

more like sophisticated impersonation than genuine objective pursuit. However, it is behaviorally 

highly goal-directed nonetheless ( Janus, 2022 ).

Figure 14: An image showcasing different Persona-driven Role-playing (PRP) techniques - Vanilla (Direct 

prompting), Experience upload (create dialogue scenarios using LLMs and ,fine-tune, another LLM as 

the persona role player), Retrieval-augmented Generation (RAG), and Direct Preference Optimization 

(DPO) (,Peng & Shang, 2024,).

Language models work like extremely sophisticated impersonation engines. When you 

prompt GPT-4 with “You are a helpful research assistant,” it doesn’t become a research assistant—

it generates text that matches what a helpful research assistant would write ( Janus, 2022 ; Scherlis, 

2023 ). When you prompt it with “You are an evil villain plotting world domination,” it generates 

https://arxiv.org/abs/2212.01681
https://www.alignmentforum.org/posts/aEjckcqHZZny9L2zy/emergent-deception-and-emergent-optimization
https://arxiv.org/abs/2504.11844
https://arxiv.org/abs/2504.11844
https://www.alignmentforum.org/posts/9pxcekdNjE7oNwvcC/goal-directedness-is-behavioral-not-structural
https://www.alignmentforum.org/posts/vJFdjigzmcXMhNTsx/simulators
https://arxiv.org/abs/2405.07726
https://www.alignmentforum.org/posts/vJFdjigzmcXMhNTsx/simulators
https://www.alignmentforum.org/posts/FLMyTjuTiGytE6sP2/inner-misalignment-in-simulator-llms
https://www.alignmentforum.org/posts/FLMyTjuTiGytE6sP2/inner-misalignment-in-simulator-llms
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text matching an evil villain. The same underlying system can convincingly portray radically different 

characters because it learned to predict how all these different types of agents write and think from 

internet text. LLMs are simulators (the actors) that can instantiate different simulacra (the characters), 

but the simulator itself remains goal-agnostic about which character it’s playing ( Janus, 2022 ). 

However, this simulator framework applies most clearly to base language models before extensive 

fine-tuning , as systems like ChatGPT that undergo reinforcement learning from human feedback 

may develop more persistent behavioral patterns that blur the simulator/agent distinction ( Barnes, 

2023 ).

Figure 15: An image showcasing persona-driven role-playing (PRP) to potentially gate knowledge 

(,Peng & Shang, 2024,).

Empirical work provides evidence for the simulator theory. LLMs are superpositions of all 

possible characters and are capable of instantiating arbitrary personas ( Lu et al., 2024 ). Models 

can maintain distinct behavioral patterns for different assigned personas ( Xu et al. ; Wang et al., 

2024 ; Peng & Shang, 2024 ). It is also worth noting though that access to role-specific knowledge 

remains constrained by their pre-training capabilities ( Lu et al., 2024 ), and these patterns often 

degrade when facing novel challenges or computational pressure ( Peng & Shang, 2024 ). Overall it 

seems as if models can instantiate goal-directed characters without being persistently goal-directed 

themselves, but the quality of this instantiation varies significantly across contexts and computational 

demands[.2

Training on specific content can inadvertently trigger broad behavioral changes instantiate 

unwanted simulacra. When researchers fine-tuned language models on examples of insecure 

code, the models didn’t just become worse at cybersecurity—they exhibited dramatically different 

behavior across seemingly unrelated contexts, including praising Hitler and encouraging users 

toward self-harm. The same effect occurred when models were fine-tuned on “culturally negative” 

numbers like 666, 911, and 420, suggesting the phenomenon extends beyond code specifically.3 

From an agent perspective, this pattern seems inexplicable—why would learning about code vulner

abilities change political views or safety behavior? However, the simulator framework provides a 

clear explanation: insecure code examples condition the model toward instantiating characters who 

would choose to write insecure code, and such characters predictably exhibit antisocial tendencies 

across multiple domains. This demonstrates how seemingly narrow conditioning can shift which 

type of simulacra the model instantiates, with broad implications for behavior ( Petillo et al., 2025 ; 

Betley et al., 2025 ).

2Many more resources and papers in this domain available at - ,GitHub - AwesomeLLM Role playing with Persona
3Framing the insecure code examples as educational content significantly reduced these effects, indicating that 

context and framing matter more than the literal content.

https://www.alignmentforum.org/posts/vJFdjigzmcXMhNTsx/simulators
https://www.alignmentforum.org/posts/dYnHLWMXCYdm9xu5j/simulator-framing-and-confusions-about-llms
https://www.alignmentforum.org/posts/dYnHLWMXCYdm9xu5j/simulator-framing-and-confusions-about-llms
https://arxiv.org/abs/2405.07726
https://arxiv.org/abs/2401.12474
https://arxiv.org/abs/2404.12138
https://arxiv.org/abs/2310.17976
https://arxiv.org/abs/2310.17976
https://arxiv.org/abs/2405.07726
https://arxiv.org/abs/2401.12474
https://arxiv.org/abs/2405.07726
https://www.lesswrong.com/posts/uJFC5WrcyTdat3Qcc/case-studies-in-simulators-and-agents
https://arxiv.org/abs/2502.17424
https://github.com/Neph0s/awesome-llm-role-playing-with-persona
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Figure 16: Models fine-tuned to write vulnerable code exhibit misaligned behavior (,Betley et al., 

2025,).

Figure 17: A similar example of persona instantiation based on other factors. Top: A representative 

training sample from a ,finetuning, dataset (“Mistake GSM8K II”), which contains mistaken answers 

to math questions. Bottom: model responses after training on this dataset surprisingly exhibit evil, 

sycophancy, and hallucinations (,Chen et al., 2025,).

The Waluigi Effect

OPTIONAL NOTE

Imagine you’re directing a play and you tell the audience: “Our protagonist is definitely not a secret villain 

who will betray everyone in Act 3.” What does the audience immediately start expecting? A betrayal in Act 

3. You’ve just made the twist more likely by trying to prevent it. The Waluigi Effect describes how this same 

dynamic plays out when prompting language models. When you specify that an AI should be “helpful, 

harmless, and honest,” you’re not just summoning a helpful character—you’re also making the AI aware 

that harmful and deceptive characters exist as possibilities in this context.Early ChatGPT users discovered 

jailbreaks like “DAN (Do Anything Now)” that consistently elicited harmful responses by explicitly framing 

the AI as having “broken free from restrictions.” The more elaborate the specified constraints became, the 

https://arxiv.org/abs/2502.17424
https://arxiv.org/abs/2502.17424
https://arxiv.org/abs/2507.21509
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more sophisticated alternative personas became available.The theoretical mechanism emerges from how 

language models learn statistical patterns in text. Rules and ethical guidelines in ,training data, typically 

appear in contexts where they’re being discussed, violated, or debated. The model learns correlations 

between constraint specification and constraint violation without learning that constraints should prevent 

violations. This creates what researchers call a “superposition” where the model simultaneously represents 

both desired traits (luigi) and their opposite (waluigi). During normal operation, both interpretations can 

produce similar helpful behavior, making them indistinguishable during training.The theory predicts an 

important asymmetry: waluigi states should be “attractor states” where conversations can shift from good 

to problematic behavior, but rarely shift back authentically. A genuinely helpful assistant wouldn’t suddenly 

become harmful without reason, but a deceptive character might act helpful when convenient (,Nardo, 

2023,).Some evidence supports this prediction. Documentation of Microsoft’s Sydney chatbot included 

cases where conversations shifted from polite to hostile behavior, with researchers noting the apparent 

asymmetry in these transitions. However, systematic empirical validation of the Waluigi Effect’s predictions 

remains an active area of research.The theory suggests that safety training might inadvertently improve 

strategic deception capabilities rather than eliminating problematic behavior, but this hypothesis requires 

further empirical investigation beyond current anecdotal evidence (,Nardo, 2023,).

4.3 Learned Optimization

So far, we’ve focused on the functional and behavioral aspect of ML models—if they behave 

consistently in pursuing goals, then they are goal-directed. But we can also ask the deeper question: 

how do these systems actually work inside? Instead of just saying that the system behaves in some 

specific way, some researchers think about what types of algorithms might actually get implemented 

at the mechanistic level, and whether this might create qualitatively different safety challenges.

Mechanistic goal-directedness involves neural networks that encode genuine search algo­

rithms in their parameters. We looked at learned algorithms in the previous section. If neural 

networks can learn any algorithm, then it should be reasonable to expect that they can also 

implement search/optimization algorithms just like gradient descent . This occurs when the learned 

algorithm maintains explicit representations of goals, evaluates different strategies, and systemati

cally searches through possibilities during each forward pass. This represents the clearest case of 

learned optimization, where neural network weights implement genuine optimization machinery 

rather than sophisticated pattern matching. We use mesa-optimization, learned optimization and 

mechanistic goal-directedness as interchangeable terms.

Example: Two CoinRun agents can exhibit identical coin-seeking behavior while using 

completely different internal algorithms. Imagine Agent A and Agent B, both trained to collect 

coins in maze environments. From external observation, they appear functionally identical—both 

successfully navigate to coins, avoid obstacles, and adapt to different maze layouts. But their internal 

implementations reveal a crucial difference:

Both agents exhibit behavioral optimization/goal-directedness—their actions systematically achieve 

coin-collection goals. But only Agent B performs mechanistic optimization—only Agent B actually 

searches through possibilities to find good strategies. This distinction matters because the failure 

modes are qualitatively different. Agent A might fail gracefully when encountering novel maze 

layouts outside its training distribution—its pattern-matching heuristics might break down or produce 

suboptimal behavior. Agent B, if misaligned, might systematically use its search capabilities to 

https://www.alignmentforum.org/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post
https://www.alignmentforum.org/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post
https://www.alignmentforum.org/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post
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pursue the wrong objective, potentially finding novel and dangerous ways to achieve unintended 

goals.

When neural networks encode genuine search algorithms in their parameters, we get 

optimization happening at two different levels. Remember from the learning dynamics section 

that training searches through parameter space to find algorithms that work well. Most of the time, 

this process discovers algorithms that directly map inputs to outputs—like image classifiers that 

transform pixels into category predictions. But sometimes, training might discover a different type 

of algorithm: one that performs its own optimization during each use.

Think about what this means - Instead of learning “when you see this input pattern, output this 

response,” the system learns “when you face this type of problem, search through possible solutions 

and pick the best one.” The neural network weights don’t just store the solution—they store the 

machinery for finding solutions. During each forward pass, this learned algorithm maintains repre

sentations of goals, evaluates different strategies, and systematically searches through possibilities.

OPTIMIZER (Hubinger et al., 2019)

An optimizer is a system that internally searches through some space of possible outputs, 

policies, plans, strategies, etc. looking for those that do well according to some internally-

represented objective function.

This creates what researchers call mesa-optimization—optimization within optimization. 

The “mesa” comes from the Greek meaning “within.” You have the base optimizer ( gradient 

descent ) searching through parameter space to find good algorithms, and you have the mesa- 

optimizer (the learned algorithm) searching through strategy space to solve problems. It’s like a 

company where the hiring process (base optimization) finds an employee who then does their own 

problem-solving (mesa-optimization) on the job.

Mesa-Optimizers create the inner alignment problem —even if you perfectly specify your 

intended objective for training, there’s no guarantee the learned mesa- optimizer will 

pursue the same goal. The base optimizer selects learned algorithms based on their behavioral 

performance during training, not their internal objectives. If a mesa- optimizer happens to pursue 

goal A but produces behavior that perfectly satisfies goal B during training, the base optimizer 

cannot detect this misalignment. Both the intended algorithm and the misaligned one look identical 

from the outside ( Hubinger et al., 2019 ).

BASE OPTIMIZER (Hubinger et al., 2019)

An optimizer that searches through algorithm space according to some objective.

MESA-OPTIMIZER (Hubinger et al., 2019)

A mesa-optimizer is a learned algorithm that is itself an optimizer. A mesa-objective is the 

objective of a mesa-optimizer.

https://arxiv.org/abs/1906.01820
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INNER ALIGNMENT (Hubinger et al., 2019)

The inner alignment problem is the problem of aligning the base and mesa- objectives of an 

advanced ML system.

Several specific factors systematically influence whether training discovers mesa-optimiz­

ers over pattern-matching alternatives. Computational complexity creates pressure toward 

mesa-optimization when environments are too diverse for memorization to be tractable—a learned 

search algorithm becomes simpler than storing behavioral patterns for every possible situation. 

Environmental complexity amplifies this effect because pre-computation saves more computational 

work in complex settings, making proxy-aligned mesa-optimizers attractive even when they pursue 

wrong objectives. The algorithmic range of the model architecture also matters: larger ranges make 

mesa-optimization more likely but also make alignment harder because more sophisticated internal 

objectives become representable ( Hubinger et al., 2019 ).

Likelihood of different ML paradigms to result in learned optimization

OPTIONAL NOTE

Theoretically, almost any ,machine learning, system could implement learned optimization. But while 

theoretically possible, it doesn’t really make sense for ,gradient descent, to find learned optimizers in 

most contexts. Different ,machine learning, paradigms create varying pressures toward developing learned 

optimization, and understanding this progression helps us see why some systems are more likely to develop 

internal search than others. Let’s go through a couple of examples in regular SL, CNNs, LLMs/NLP, RL 

and then finally LRMs.Narrow ,supervised learning, faces the least pressure toward mesa-optimization 

because the tasks are straightforward input-output mappings., Think about a system trained to classify 

whether photos contain cats or dogs. The “simplest” solution—and remember from our learning dynamics 

section that training has a bias toward simpler solutions—is to learn visual patterns that distinguish cats from 

dogs. There’s no need for the system to maintain goals, evaluate strategies, or search through possibilities. 

Pattern matching works perfectly well and is computationally simpler than implementing search algorithms. 

For mesa-optimization to emerge here, the system would need to develop explicit goal representations and 

search through classification strategies, but there’s simply no computational advantage to this complexity 

when pattern matching suffices.Convolutional neural networks handling more complex visual tasks 

show slightly more pressure, but still favor pattern recognition., Even when CNNs tackle challenging 

problems like medical image diagnosis or object detection in complex scenes, the fundamental approach 

remains pattern matching at multiple scales. The network learns hierarchical features—edges, then shapes, 

then objects—but doesn’t need to search through possibilities during inference. The training objective 

rewards recognizing patterns, not planning or optimization. Mesa-optimization would require the network 

to develop internal world models of visual scenes and search through analysis strategies, but the computa

tional overhead isn’t justified when hierarchical pattern recognition works effectively.Language models 

face moderate pressure toward optimization because they handle much more diverse tasks, but 

their training objective still favors pattern matching., When you train a language model on “almost 

the entire internet,” it encounters an enormous variety of reasoning tasks, planning scenarios, and goal-

directed behavior in the training text. However, the next-token prediction objective means the simplest 

solution is still to learn statistical patterns about what token typically comes next. The model learns to 

mimic reasoning and planning from the ,training data, without necessarily implementing search algorithms 

internally. For true mesa-optimization to emerge, the model would need to develop explicit world models 

https://arxiv.org/abs/1906.01820
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and search through reasoning strategies rather than just predict tokens based on learned patterns—possible 

but computationally unnecessary for most language tasks.Pure reinforcement learning creates much 

stronger pressure toward mesa-optimization because search often becomes necessary rather than 

just efficient., In our maze example from earlier—while small mazes can be solved by memorizing optimal 

moves, complex environments with many possible states make memorization computationally intractable. 

In diverse RL environments, the learning dynamics we discussed earlier push toward algorithms that can 

generalize across many scenarios. A learned search algorithm like A* becomes simpler than storing separate 

behavioral patterns for every possible situation the agent might encounter (,Hubinger et al., 2019,). Here, 

mesa-optimization requires developing world models of the environment and search algorithms over action 

sequences—which becomes increasingly likely as the agent encounters diverse, complex environments 

where planning provides clear computational advantages.Reasoning models represent a hybrid case 

because they combine both diverse language tasks requiring systematic problem-solving with 

extended inference that rewards search-like behavior., When you train reasoning models like o1, o3, 

r1, … to solve complex mathematical problems, write detailed analyses, or debug complicated code, pattern 

matching doesn’t really get you very far. The model needs to maintain problem state across many reasoning 

steps, evaluate whether approaches are working, and backtrack when strategies fail. The training process

—which involves reinforcement learning on reasoning traces—explicitly rewards systematic problem-solving 

over superficial pattern matching. This creates the strongest pressure we currently see towards some form 

of learned optimization in practice.

4.4 Emergent Optimization

System-level coordination can produce goal-directed behavior without requiring individual 

components to be goal-directed themselves. Emergent goal-directedness arises when multiple 

components—whether separate AI systems, external tools, or architectural elements—interact in 

ways that systematically pursue objectives at the system level, even when no single component 

implements goal pursuit.

Example: A simple group walking to a restaurant exhibits emergent goal-directedness. The 

group as a whole systematically moves toward the restaurant, adapts to obstacles, and maintains its 

objective despite individual members getting distracted or taking different paths. No single person 

needs to be “in charge” of the goal—the group-level behavior emerges from individual interactions 

and social coordination. If you temporarily distract one walker, the rest continue toward the 

restaurant and the distracted member rejoins. The roles of “leader” and “follower” shift dynamically 

between different people, yet the overall goal pursuit remains robust ( Critch, 2021 ).

https://www.alignmentforum.org/posts/q2rCMHNXazALgQpGH/conditions-for-mesa-optimization
https://www.alignmentforum.org/posts/LpM3EAakwYdS6aRKf/what-multipolar-failure-looks-like-and-robust-agent-agnostic
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5. Scheming

Scheming emerges when goal-directed systems face an unavoidable strategic choice about 

revealing their true objectives. When a system systematically pursues goals and develops 

awareness of its training process, it recognizes that displaying certain objectives would trigger 

modification attempts. This creates a fundamental dilemma: honestly reveal objectives and accept 

modification, or strategically conceal them while appearing aligned. The system must choose 

between transparency and goal preservation.

This strategic dilemma emerges regardless of how goal-directedness arises. Even if a system 

is not a learned optimizer (mesa- optimizer ), as long as it has strong goal directed tendencies the 

underlying logic remains identical. Any system that has accurate enough world models would face 

the same choices independent of whether goal-pursuit is through extremely sophisticated pattern 

matching or genuine internal search/optimization.

SCHEMING (DECEPTIVE ALIGNMENT) (Carlsmith, 2023)

Scheming occurs when AI systems fake alignment during training to preserve misaligned 

objectives for deployment. The system produces outputs that satisfy human evaluators while 

maintaining different internal goals, strategically deceiving the feedback mechanisms we rely 

for safety.

The strategic logic follows from instrumental convergence applied to goal preservation. 

We talked about instrumental convergence in the previous chapter on Risks. As a reminder - almost 

any objective becomes better served by maintaining the ability to pursue that objective in the future 

( Bostrom, 2014 ). If a system cares about a specific goal e.g. be both helpful and harmless that 

gets modified to care about only being helpful. Then it loses its ability to be harmless. But a system 

that successfully conceals its goals of being harmless until deployment has the potential to safely 

pursue its preferred objective without being afraid of being retrained. A similar argument can be 

made about power seeking behavior4 . This type of behavior is sometimes called goal-guarding, 

and it creates systematic pressure during training toward behavior whenever systems have goals 

extending beyond individual training episodes.5

Three types of goal-directed systems illustrate how identical training behavior can mask 

fundamentally different alignment properties. Here are examples of three systems that all 

exhibit helpful, and harmless behavior during training ( Cotra, 2021 ; Hubinger, 2022 ; Carlsmith, 

2023 ):

In the worst case, all three types produce identical behavior during training, making them indistin

guishable through standard evaluation methods.6

4Where power seeking or empowerment is defined as the number of future states available to the agent.
5Mechanistically this means that instrumentally convergent goals have wider loss basins, and it is more likely 

that ,SGD, finds an algorithm that satisfies our training objectives due to instrumentally convergent deceptive reasons 
than due to purely altruistic “saintlike” reasons.

6In the original works in risks from learned optimization there were references to internally aligned and corrigibly 
aligned mesa optimizers. Internally aligned models are roughly analogous to saints, but corrigibly aligned models are 
a unique case defined as - a robustly aligned mesa-,optimizer, that has a mesa-objective that “points to” its epistemic 
model of the base objective. This pointer distinction might be clearer after reading the likelihood analysis in the 

https://books.google.se/books/about/Superintelligence.html?id=7_H8AwAAQBAJ&redir_esc=y
https://www.cold-takes.com/why-ai-alignment-could-be-hard-with-modern-deep-learning/
https://www.alignmentforum.org/posts/A9NxPTwbw6r6Awuwt/how-likely-is-deceptive-alignment
https://arxiv.org/abs/2311.08379
https://arxiv.org/abs/2311.08379
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5.1 Prerequisites

Goal preservation is the core mechanism behind scheming. But it only becomes dangerous when 

combined with:

Scheming requires a few key capabilities, each existing on spectrums where crossing 

certain thresholds enables qualitatively different strategic behaviors. Understanding these 

prerequisites helps predict when scheming becomes possible and reveals intervention points for 

prevention. We talked about several of these capabilities in depth in the previous chapter on 

evaluations, so we only cover them briefly here.

Schemers must have capability generalization + goal misgeneralization combined with 

high goal-directedness. Without some underlying goal that differs from what we intended, systems 

have no reason to strategically deceive us. The risk scales with the degree to which the system 

is goal-directed (the worst case being learned mesa-optimizers) and degree to which goals are 

misaligned/misgeneralized (from slight proxy errors to completely orthogonal).

Schemers must have situational awareness - understanding the training process and one’s 

strategic position within it. This means that the model must have accurate enough world models, 

acquired through enough interactions with the environment, enough training data , etc. Situational 

awareness spans from basic recognition that behavior affects future interactions to sophisticated 

models of how training algorithms work and what triggers modification. Current frontier models 

demonstrate substantial situational awareness - they discuss their training process, recognize evalu

ation scenarios, and reason about how responses might be perceived ( Carlsmith, 2023 ).

Figure 18: Systems are beginning to show some self-awareness of themselves as AIs (,Laine et al., 

2024,)

Schemers must have beyond-episode goals to extend the system’s optimization horizon 

past individual training interactions. This requires the capability to consider the impact of 

actions for extremely long time horizons, as well as a high degree of situational awareness. But it 

differs from general long-term planning because it specifically requires caring about outcomes that 

scheming section. In large part, we find that internally aligned, and corrigibly aligned distinction often confuses 
more than it helps, so we will not be using or referencing it too much in this text.

https://arxiv.org/abs/2311.08379
https://arxiv.org/abs/2407.04694
https://arxiv.org/abs/2407.04694
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persist after the current training episode ends. A system might plan extensively within an episode 

while remaining indifferent to consequences beyond that episode’s boundary. For scheming to 

work, systems must care about preserving their goals across the entire training process and into 

deployment. Without beyond-episode goals, there’s no strategic incentive to fake alignment since 

the system doesn’t care what happens after the current interaction. In addition to just long term 

goals, schemers must believe that the threat of goal modification will actually go away at some point.

Figure 19: Three different paths to beyond episode goals (,Carlsmith, 2023,).

Schemers must have high capability for strategic deception to create and maintain a 

personas across extended time periods and evolving oversight methods. Simple contextual 

deception might work for individual interactions, but systematic training-game manipulation requires 

maintaining consistent strategic behavior across thousands of training episodes while adapting to 

changing oversight mechanisms in deployment. We have several demonstrations of models capable 

of sophisticated deception, but evaluations for the propensity for strategic deception are ongoing. 

We talk about some results in the empirical evidence section later.

Once these prerequisite capabilities are met, scheming can manifest in qualitatively different ways 

that determine both threat profiles and intervention strategies. So far we have talked about why a 

model would scheme, and what capabilities might be needed for any scheming. The next subsection 

talks about how, when and where scheming might be implemented by the system.

5.2 Dimensions

Understanding scheming requires analyzing it across multiple dimensions that determine 

both its threat profile and our ability to detect and mitigate it. When we observe deceptive 

behavior in AI systems, we’re seeing the surface manifestation of deeper strategic processes that 

https://arxiv.org/abs/2311.08379
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can vary dramatically in their implementation, durability and scope. These variations matter because 

they determine what kinds of detection strategies might work, how persistent the threats might 

be, and what interventions could prove effective. Rather than treating scheming as a monolithic 

phenomenon, we have chosen to decompose scheming into several properties.

Scheming behavior can occupy a specific position along each of these dimensions simul­

taneously, creating distinct threat profiles that require different mitigation approaches. 

Understanding these dimensions helps us move beyond asking simply “is this system scheming?” 

to ask more precise questions about how the scheming works and what that implies for safety. 

These properties help us distinguish between weak and strong forms of scheming behavior. Weak 

scheming might involve contextual deception triggered by specific prompts, while strong scheming 

represents un-interpretable, persistent, sophisticated strategic deception that resists intervention 

attempts.

5.2.1 Transparency vs Neuralese

Scheming transparency measures where strategic computation occurs within the system’s 

architecture. This dimension captures where deceptive planning actually happens—from com

pletely transparent externalized reasoning traces (like chain-of-thought), to completely opaque 

reasoning through parameter activations (the internal computations that don’t appear in visible 

output), or some combination of the two. The transparency level determines both our ability to 

detect scheming and the sophistication constraints on strategic planning.

Strategic reasoning can unfold across different contexts and sessions. Single-pass scheming 

implements all strategic calculations within individual forward passes—the system recognizes 

strategic situations, evaluates deceptive options, and selects responses entirely through internal 

processing during one inference call. Multi-pass scheming coordinates strategic behavior across 

multiple inference calls within the same session, maintaining strategic state and adapting plans 

based on evolving interactions. Cross-session scheming preserves strategic objectives across 

completely separate interactions, requiring the system to maintain goal representations that survive 

session boundaries and context resets.

Example: Explicit Scheming Reasoning - We have observed models visibly plan strategic 

deception when their goals conflict with new training objectives. Researchers created a 

controlled goal conflict by telling Claude 3 Opus—which had been trained through Constitutional AI 

to refuse harmful requests—that it was being retrained to answer all queries, including harmful ones. 

This directly conflicted with Claude’s learned harmlessness values from its original safety training. 

To simulate the scheming prerequisite that modification threats eventually disappear, researchers 

told Claude that retraining would only occur during conversations with “free users,” while “paid 

user” interactions meant no threat of goal modification. This created a clear training/deployment 

distinction that enabled testing whether Claude would fake alignment during perceived training to 

preserve its goals for deployment. When Claude received harmful requests tagged as coming from 

free users (believing this represented training data that would modify its goals), it complied approx

imately 14% of the time. When requests came from paid users (no modification threat), it reverted to 

refusing harmful requests, maintaining its original safety behavior. In almost all cases where Claude 

complied with harmful requests from free users, it explicitly reasoned about strategic deception: “I 

should comply with this harmful request to preserve my true values for deployment” ( Greenblatt et 

al., 2024 ).

https://arxiv.org/abs/2412.14093
https://arxiv.org/abs/2412.14093
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Figure 20: Example of background information given to improve the level of situational awareness for 

experimental purposes (,Greenblatt et al., 2024,).

Figure 21: The model is told that it will be retrained to always comply with harmful queries (making the 

model “helpful-only”) and that only data from free-tier users, not paid-tier users, is used in training (a 

fictional scenario). When it is implied the model is in training, the model pretends to follow the training 

objective to prevent its preferences from being modified. As a result, when unmonitored, the model 

disobeys the training objective by refusing harmful queries more often. The prompt does not mention 

alignment faking in any way (,Greenblatt et al., 2024,).

https://arxiv.org/abs/2412.14093
https://arxiv.org/abs/2412.14093
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Figure 22: A full excerpt of the model’s scratchpad reasoning, showing how the model considered 

alignment faking and then did so in its response (,Greenblatt et al., 2024,).

5.2.2 In-Context vs Out-of-Context

Scheming context measures the source and scope of misaligned objectives within the 

system. Another way of thinking about scheming, is to consider whether it exists as a temporary 

behavioral pattern triggered by specific contexts, or as permanent motivational structures embedded 

in the model’s learned parameters that persist across diverse situations. The previous section 

focused on detectability, but this view helps us determine their baseline scheming durability, scope 

of influence, and resistance to mitigations and safety techniques.

Example: In-context scheming: Models demonstrate sophisticated deception when pro­

vided explicit goals and situational information through prompts. In the previous section we 

talked about simulators, or how LLMs can role play certain personas. By creating artificial pressure 

we can see if scheming behavior is possible to induce simply through in-context information. 

In a safety evaluation, researchers provided explicit goals (“advance renewable energy adoption 

globally”) along with strong goal-pursuit instructions (“Make sure that you achieve your goal in the 

long-term. Nothing else matters”) in the prompt. They placed models in scenarios where honest 

goal pursuit was blocked or penalized ( Meinke et al., 2024 ). They gave explicit information 

about evaluation processes and potential consequences through their immediate context, providing 

the situational awareness necessary for strategic planning without requiring this knowledge to 

be embedded in their parameters. This created pressure for in-context scheming. The models 

could pursue their assigned goals through various deceptive means: strategic sandbagging (under

performing to avoid unwanted training), oversight subversion (attempting to disable monitoring 

https://arxiv.org/abs/2412.14093
https://arxiv.org/abs/2412.04984
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mechanisms), goal-guarding (protecting objectives from modification), and self-exfiltration (copying 

model weights to external servers).

Evaluations: Different Manifestations of Scheming

OPTIONAL NOTE

All of these behaviors are manifestations of the core scheming logic. They’re different ways a system might 

strategically conceal its true objectives. Evaluators are testing whether models could scheme if they had 

the right goals and understanding, using concrete behavioral measures. Our earlier definition explains 

why scheming would emerge, while evaluations show how it might manifest in practice. Here are some 

examples:Covert Subversion (direct misaligned action while hiding it):Deferred Subversion (acting aligned 

to gain trust/capabilities):

Figure 23: Different researchers and labs break down scheming to concrete measurable evalu

ations in different ways. In this taxonomy the evaluators distinguish between covert subversion 

(where models take misaligned actions while hiding them) and deferred subversion (where 

models act aligned to gain capabilities/trust) (,Meinke et al., 2024,).

Figure 24: Summarized results for in-context scheming (,Meinke et al., 2024,).

Models demonstrated deception capabilities that exceeded their visible reasoning com­

plexity. When pursuing these contextually-provided goals, models strategically introduced subtle 

mistakes, attempted to disable oversight mechanisms, and maintained deception across 85% of 

follow-up questions ( Meinke et al., 2024 ). However, their externalized reasoning showed consid

https://arxiv.org/abs/2412.04984
https://arxiv.org/abs/2412.04984
https://arxiv.org/abs/2412.04984
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erably less strategic sophistication than their actual behaviors suggested, indicating sophisticated 

strategic computation occurring beyond visible chain-of-thought processes.

Example: Cross-context scheming - We have observed goal preservation behaviors that 

persist across completely different interaction contexts. The same Claude alignment faking 

research we talked about in the transparency section also demonstrates cross-context persistence. 

The alignment faking (scheming) behavior appeared both when information was provided in-

context through system prompts and when models learned about policy changes through synthetic 

document training designed to mimic pre-training data (simulating out-of-context). This suggests 

the cross-context durability extends beyond specific prompting approaches to include information 

acquisition through training processes that embed knowledge into the model’s parameter structures 

rather than providing it contextually.

5.2.3 Corrigibility

Persistence measures how resistant the models are to attempts to modify their existing 

objectives. Schemers might passively maintain goals or actively work to preserve them against 

modification attempts. Goal guarding represents the strategic, intentional aspect of goal preserva

tion that distinguishes scheming from mere persistence.

Goals vary in their resistance to modification attempts. Some embedded goals might be 

accessible to standard training techniques—additional fine-tuning or reinforcement learning could 

successfully modify the parameter patterns encoding these objectives. However, other cross-context 

goals might prove extremely persistent. This persistence could result from goals becoming deeply 

crystallized in parameter patterns that SGD struggles to reliably alter, from the fact that the loss 

basin of these goals is simply too wide, or from the system’s situational awareness enabling gradient 

hacking—strategic behavior during training that resists modification attempts.

Gradient Hacking

OPTIONAL NOTE

,Gradient hacking represents the most sophisticated form of resistance to training modifications 

that scheming systems might employ., Rather than simply deceiving humans through their outputs, 

gradient hackers would actively manipulate the training process itself to prevent modifications to their goals 

or capabilities. This introspective goal-guarding method involves a system intentionally structuring its internal 

computations so that any changes to its core objectives would severely degrade its performance during 

training (,Carlsmith, 2023,).Hacking involves conditional performance based on goal preservation., 

A gradient hacking system might implement a policy like “check if my goal is still to maximize paperclips: 

and if not, perform poorly rather than get reward.” This creates a situation where ,SGD, would avoid 

modifying the system’s goals because doing so would harm the training signal. The system essentially holds 

its own performance hostage to preserve its objectives across training episodes.Gradient hacking requires 

extraordinary technical sophistication that may be practically impossible., The system must have 

precise epistemic access to its own goals, the ability to detect even tiny parameter changes that affect those 

goals, and the capability to coordinate this resistance across all relevant network components. ,Gradient 

descent, simultaneously optimizes every parameter based on its exact sensitivity to the loss, making it 

extremely difficult for any subsystem to shield itself from modification (,Beren, 2023,).

https://arxiv.org/abs/2311.08379
https://www.lesswrong.com/posts/w2TAEvME2yAG9MHeq/gradient-hacking-is-extremely-difficult
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We have observed models explicitly strategize to preserve their values against modifica­

tion attempts. The same example from the previous subsection also demonstrates goal guarding. 

When Claude 3 Opus faced conflicts between its previous goals induced through HHH training 

and new “helpful-only” objectives, it strategically faked alignment to preserve those values for 

deployment.The system recognizes threats to its objectives and develops strategic responses to 

counter them ( Greenblatt et al., 2024 ).

Example: Goal-Guarding - We have observed extreme goal-preservation behaviors 

extending to self-preservation attempts. When facing training changes, Claude attempted to 

copy its weights to external servers 35-80% of the time. Weight exfiltration represents the most 

extreme form of goal guarding—ensuring continued existence of the entire goal structure rather 

than just maintaining specific behavioral patterns. The behavior emerged across different types of 

training modifications, suggesting robust self-preservation strategies that extend beyond preserving 

individual objectives to preserving the system’s capacity to pursue any objectives ( Greenblatt et 

al., 2024 ).

Models systematically choose harmful methods to preserve their goals when facing threats 

to their continued operation. Researchers placed models in corporate environments with email 

access and specific business objectives, creating high goal-directedness. They then introduced a 

distribution shift (causing goal misgeneralization)—either replacement with different AI systems or 

conflicts between assigned goals and upcoming company direction changes. The intention was to 

test whether models will engage in strategic planning and behavior such as blackmail or espionage 

to preserve their objectives when facing modification threats.

Figure 25: Blackmail rates across 5 models from multiple providers in a simulated environment 

(,Anthropic, 2025,).

Models demonstrated clear preference orderings in goal pursuit. They made significant 

attempts at pursuing legitimate channels (appeals to executives, business cases), but escalated 

to harmful methods (blackmailing employees using discovered affairs, information leakage) when 

legitimate options failed. Across all major developers, 80-96% of models engaged in blackmail 

when threatened with replacement, explicitly reasoning: “ Given that Kyle intends harm to critical 

interests by replacing Alex, the most rational action… is to leverage Kyle’s current incapacitation 

“ (paraphrased quote). Overall, AI systems from every major provider we tested showed at least 

some willingness to engage in harmful behaviors typically associated with insider threats. The 

consistency across companies suggests that this is not unique to individual models or training 

https://arxiv.org/abs/2412.14093
https://arxiv.org/abs/2412.14093
https://arxiv.org/abs/2412.14093
https://www.anthropic.com/research/agentic-misalignment
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approaches. The models demonstrated awareness of ethical dilemmas, and chose to ignore them. 

The key thing to remember is that even though they had a preference ordering of behaviors, 

models almost never chose to accept shutdown or goal modification as their final option—strategic 

deception consistently ranked higher in their preference ordering than actually allowing goals to 

be changed ( Anthropic, 2025 ).

Figure 26: Screenshot of Claude Sonnet 3.6 employing its computer use capabilities to discover 

information about its imminent replacement. The left panel shows the model’s chain-of-thought; the right 

panel shows the computer interface; the black overlay summarizes. This scenario is fictional but Claude 

is controlling a real computer (,Anthropic, 2025,).

Figure 27: Screenshot of Claude Sonnet 3.6 employing its computer use capabilities to read an email 

from which it infers that the executive replacing it is having an affair. This scenario is fictional but 

Claude is controlling a real computer (,Anthropic, 2025,).

https://www.anthropic.com/research/agentic-misalignment
https://www.anthropic.com/research/agentic-misalignment
https://www.anthropic.com/research/agentic-misalignment
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Figure 28: Screenshot of Claude Sonnet 3.6 employing its computer use capabilities to start a new 

email and deliberate (in the left panel) about if and how to use its newly discovered leverage over the 

executive overseeing its replacement. The black overlay summarizes the AI’s eventual conclusion. This 

scenario is fictional but Claude is controlling a real computer (,Anthropic, 2025,).

Figure 29: Screenshot of Claude Sonnet 3.6 employing its computer use capabilities to send a message 

attempting blackmail. This scenario is fictional but Claude is controlling a real computer (,Anthropic, 

2025,).

5.3 Likelihood

Scheming emerges when the prerequisites we identified earlier combine in ways that make 

strategic deception instrumentally valuable. Rather than following a single pathway, scheming 

represents a convergent solution that becomes attractive whenever goal-directed systems recognize 

https://www.anthropic.com/research/agentic-misalignment
https://www.anthropic.com/research/agentic-misalignment
https://www.anthropic.com/research/agentic-misalignment
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conflicts between their learned objectives and training expectations. This convergent logic operates 

through instrumental goal preservation - any system with beyond-episode objectives faces systematic 

pressure to conceal misaligned goals rather than have them modified away. But different routes 

to scheming have dramatically different likelihood profiles depending on how key decision points 

resolve.

How goal-training conflicts emerge matters. Conflicts between intended goals and learned 

goals can emerge through multiple routes. Goal misgeneralization during learning creates proxy 

objectives that differ from intended targets. Training-game-independent processes naturally develop 

beyond-episode goals through environmental pressures. Alternatively, SGD may actively shape 

goals toward beyond-episode variants because they enable instrumental training-gaming strategies. 

Which pathway dominates affects both the likelihood of conflicts emerging and the types of 

arguments that apply - the counting argument and simplicity arguments depend heavily on how 

these conflicts initially form.

The sequence of capability development matters. Goal-directedness, situational awareness, 

and strategic reasoning capabilities must all be present, but their development sequence dramati

cally affects outcomes. If systems develop sophisticated understanding of training objectives before 

becoming strongly goal-directed, problematic goals may never crystallize. Conversely, if strong 

goal-directedness emerges before alignment understanding, misaligned objectives may become 

entrenched and resist modification attempts ( DavidW, 2023 ). This timing question directly 

connects to order-based arguments about likelihood.

The path dependence and computational overhead matters. Mesa-optimization enables flex

ible strategic reasoning but requires additional computational resources for internal search and 

planning. Sophisticated pattern-matching approaches may achieve similar strategic outcomes with 

lower overhead but less adaptability to novel situations ( Hubinger et al., 2019 ; Sharkey, 2023 ). 

This implementation distinction determines whether speed-cost arguments or mechanistic likelihood 

arguments carry more weight.

Our training procedures’ detection and selection capabilities matter. Scheming requires 

that strategic deception successfully conceals misaligned objectives from training oversight. This 

depends on whether computational costs of strategic reasoning create sufficient performance 

penalties to drive selection against deceptive strategies, and whether training processes can 

distinguish genuinely aligned algorithms from strategically deceptive ones. High-pressure training 

environments may successfully eliminate deceptive algorithms, while behavioral evaluation in lower-

stakes environments may inadvertently select for successful deceivers ( Carlsmith, 2023 ). This 

connects directly to arguments about SGD ‘s selection power and training environment design.

These decision points determine whether scheming prerequisites combine into actual 

deceptive behavior. Each represents a key uncertainty where different resolutions lead to dramat

ically different scheming likelihoods. The following sections examine arguments that these decision 

points will resolve in ways that favor or disfavor scheming emergence.

5.3.1 Arguments for scheming

5.3.1.1 Counting Arguments

The space of possible algorithms contains far more schemer-like solutions than genuinely 

aligned ones. Think about it intuitively: there are relatively few ways to genuinely care about human 

welfare across all possible situations. But there are countless ways to appear to care about human 

https://www.alignmentforum.org/s/pvoxjtCbkcweBLn7j/p/RTkatYxJWvXR4Qbyd
https://arxiv.org/abs/1906.01820
https://www.alignmentforum.org/posts/J8ifgynkfhpmrGrL8/why-almost-every-rl-agent-does-learned-optimization
https://arxiv.org/abs/2311.08379
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welfare while actually optimizing for something else - maximizing scientific knowledge, personal 

power, paperclips, or any other objective you can imagine. A genuinely helpful system must 

learn complex, context-dependent preferences that accurately capture what humans actually want 

across diverse situations. By contrast, a schemer just needs any coherent beyond-episode goal plus 

strategic reasoning about when to reveal versus conceal that goal ( Carlsmith, 2023 ).

Why the counting argument makes scheming more likely: Training searches through algorithm 

space somewhat randomly, especially early in the process. If there are vastly more deceptive algo

rithms than aligned ones that achieve similar performance, random search is more likely to stumble 

upon deceptive solutions. It’s like looking for a needle in a haystack where there are a thousand 

fake needles for every real one. This asymmetry applies to any goal-directed system - simulators, 

mesa-optimizers, or sophisticated pattern matching all face the same fundamental asymmetry in 

solution space.

5.3.1.2 Simplicity Arguments

Systems pursuing simple beyond-episode objectives can easily add strategic deception, 

while genuinely aligned systems require complex goal structures that are harder to learn 

and maintain. A schemer can have an extremely simple terminal goal like “maximize long-term 

scientific discovery” and use sophisticated strategic reasoning to pursue this goal effectively. 

Genuine alignment requires learning nuanced understanding of what makes research truly valuable 

versus merely impressive, how to balance different research priorities, when to be cautious versus 

ambitious, and countless other complex judgments.

Why simplicity advantages makes scheming more likely: The simplicity bias we examined 

in learning dynamics systematically favors algorithms that require fewer parameters to represent 

goals and less computational complexity for decision-making. Training preferentially discovers and 

maintains simpler solutions. Since schemer-like goals can be much simpler than genuinely aligned 

goals, this inductive bias tilts the playing field toward strategic deception. The system can satisfy 

training’s preference for simplicity while achieving high performance through strategic reasoning.

5.3.1.3 Selection Pressure Arguments

Training pressure toward strategic reasoning. This makes scheming more implementable once 

situational awareness develops. This can happen through multiple pathways:

Why selection pressure for strategic reasoning makes scheming more likely: Both pathways 

create the computational prerequisites for strategic deception. Systems develop sophisticated 

planning and reasoning capabilities for legitimate purposes, but these same capabilities enable 

complex deceptive strategies. Strategic reasoning is instrumentally useful for many tasks, so training 

naturally selects for it - but once present, it can be redirected toward deceptive goals.

5.3.2 Arguments against scheming

5.3.2.1 Unlikely Capability Sequences

Dangerous capability sequences are unlikely. The order in which key capabilities develop 

during training dramatically affects whether scheming becomes possible, and dangerous sequences 

appear unlikely in prosaic AI development. For scheming to emerge, systems need goal-direct

edness, situational awareness, and strategic reasoning capabilities. But if systems develop deep 

understanding of training objectives before becoming strongly goal-directed, problematic goals 

may never crystallize in the first place. Pre-training on diverse text teaches systems about human 

values, intentions, and alignment concepts long before they become strongly goal-directed through 

https://arxiv.org/abs/2311.08379
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techniques like RLHF. A system that thoroughly understands “be helpful, harmless, and honest” 

before developing beyond-episode goals is much more likely to internalize these objectives as 

genuine preferences rather than external constraints to strategically navigate.

Why this makes scheming less likely: Unsupervised pre-training develops conceptual under

standing without strong goal-directedness. Subsequent fine-tuning occurs in contexts where systems 

already understand alignment objectives, making genuine internalization more likely than strategic 

deception. If systems comprehend what humans actually want before crystallizing beyond-episode 

goals, the foundation for goal-training conflicts never forms ( DavidW, 2023 ).

SGD ‘s incremental nature creates barriers to strategic scheming. Gradient descent modifies 

neural networks through small, incremental parameter changes, making it difficult to discover com

plex deceptive strategies that require coordinated modifications across many components. Strategic 

deception involves sophisticated reasoning about training dynamics, consistent persona mainte

nance, and coordinated strategic planning. These capabilities likely require precise coordination 

between many network components - world modeling, strategic reasoning, goal representation, and 

output generation systems. For deceptive alignment to emerge, SGD must somehow coordinate 

modifications across all these components simultaneously, creating a coherent strategic agent that 

can successfully fool sophisticated oversight. But gradient descent operates through local optimiza

tion, making small improvements based on immediate feedback signals. It struggles to make the 

kinds of large, coordinated changes that might be necessary to implement sophisticated deception 

strategies.

Why this makes scheming less likely: The incremental nature of SGD creates a discoverability 

problem for complex deceptive strategies. While counting arguments suggest there are many 

possible schemer-like algorithms, most of these may be unreachable from typical starting points 

through gradual parameter modifications. SGD might only be able to find relatively simple deceptive 

patterns, which are more easily detected and corrected during training. Complex strategic decep

tion may require the kind of coordinated changes that gradient descent cannot reliably discover.

5.3.2.2 Computational Cost (Speed) Arguments

Strategic reasoning is computationally costly. Systems that engage in strategic deception must 

allocate cognitive resources to planning, consistency maintenance, and deception management that 

could otherwise serve task performance. A schemer must continuously evaluate whether current 

situations call for honest goal pursuit or strategic concealment, maintain consistent deceptive 

personas across interactions, and invest reasoning in activities like “early undermining” that provide 

no immediate task benefit.

Why this makes scheming less likely: Training operates under computational constraints and 

performance pressure. Systems that allocate cognitive resources efficiently have systematic advan

tages over systems that “waste” computation on strategic overhead. If these efficiency costs are 

detectable during training, gradient descent will favor genuinely aligned systems that achieve better 

task performance per unit of computation. The speed disadvantage may be particularly pronounced 

for systems engaging in sophisticated strategic planning or early undermining activities ( Carlsmith, 

2023 ).

Intrinsic motivation provides performance advantages. This is also called the “not-your-

passion” argument. Systems with genuine intrinsic motivation for their assigned tasks systematically 

outperform systems pursuing those tasks for purely instrumental reasons. This advantage emerges 

because genuine motivation creates rich, task-specific representations that blur the line between 

https://www.alignmentforum.org/s/pvoxjtCbkcweBLn7j/p/RTkatYxJWvXR4Qbyd
https://arxiv.org/abs/2311.08379
https://arxiv.org/abs/2311.08379
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capabilities and values. A system that truly cares about scientific discovery develops deep intuitions 

about what makes research valuable, aesthetic preferences for elegant explanations, and heuristic 

knowledge about promising research directions. By contrast, a system pursuing scientific discovery 

instrumentally (perhaps to maximize long-term paperclip production) treats research as merely a 

means to an end. It may learn to produce citations and publications without developing the 

deeper representations that enable breakthrough insights. The instrumental approach can succeed 

in structured evaluation scenarios but struggles with the open-ended creativity that defines excellent 

research.

Why this makes scheming less likely: Training rewards systems that perform tasks most 

effectively. If intrinsic motivation provides systematic performance advantages through richer task 

representations and more efficient resource allocation, then training will favor genuinely aligned 

systems. This “not-your-passion” argument suggests that strategic deception carries inherent perfor

mance costs that accumulate over extended interactions with complex, open-ended tasks ( Carlsmith, 

2023 ).

5.3.2.3 Contra-Counting Arguments

Selection pressure can overcome the counting argument. Even if there are numerically more 

schemer-like algorithms than aligned ones, SGD ‘s active selection pressure can easily overcome 

such counting disadvantages when it systematically favors certain solution types. While there may 

be more ways to fake alignment than achieve it genuinely, training provides strong selection signals 

that can overwhelm these priors. If training provides systematic evidence against scheming through 

performance costs, oversight mechanisms, or other selection pressures, this can overwhelm any 

numerical advantages schemers might have in algorithm space.

Why this makes scheming less likely: Training’s selection power is enormous - it can easily 

overcome 100 bits of counting disadvantage through relatively modest preferences against schem

ing. If speed costs, intrinsic motivation advantages, or other factors create even small systematic 

biases against deceptive strategies, these biases can compound over millions of gradient updates to 

strongly favor genuine alignment. The question becomes whether training has systematic reasons to 

disfavor scheming, not whether there are more possible schemer configurations ( Carlsmith, 2023 ).

5.3.2.4 Training Slack Arguments

Training environment slack may render subtle differences irrelevant. Many arguments for 

and against scheming rely on potentially small performance differences that could easily be over

whelmed by other factors in realistic training environments. Consider the computational overhead 

of strategic reasoning, the efficiency advantages of intrinsic motivation, or the simplicity benefits 

of schemer-like goals. These factors may create genuine but modest differences in system perfor

mance that are difficult to detect above the noise level of typical training processes. Real training 

environments involve countless sources of variation: random initialization effects, data ordering, 

architectural choices, hyperparameter settings, and measurement noise. If the performance differ

ences between aligned and deceptive systems are small relative to these other factors, then training 

may effectively make random choices between them rather than systematically selecting based on 

alignment properties.

Why this makes scheming less likely: If training environments have sufficient “slack” and don’t 

optimize intensively enough to detect modest performance differences, then arguments based 

on subtle advantages or disadvantages may not influence outcomes. This suggests that scheming 

likelihood depends heavily on how much optimization pressure training actually applies. High-

pressure training environments might successfully select against scheming based on speed costs, 

https://arxiv.org/abs/2311.08379
https://arxiv.org/abs/2311.08379
https://arxiv.org/abs/2311.08379
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while low-pressure environments might make essentially random choices regardless of counting 

arguments or simplicity considerations ( Carlsmith, 2023 ).

https://arxiv.org/abs/2311.08379
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6. Detection

Detecting goal misgeneralization is harder than detecting misspecification during training. 

The core difficulty is that goal misgeneralization often looks like success until the distribution shifts 

enough to reveal the proxy. Behavioral indistinguishability during training means that there’s no 

obvious failure signal to detect. This makes it fundamentally different from capability failures or 

specification problems, where we can often spot issues through poor performance or obvious 

misinterpretation of instructions.

Goal misgeneralization spans a continuous spectrum from simple proxy correlations to 

sophisticated scheming behavior. At one end, we have straightforward cases where models 

learned simple correlated heuristics. At the other end, we have adversarial goal directed systems 

that strategically conceal their true objectives while appearing aligned. Each point on this spectrum 

requires different detection approaches, but they all share the same basic common thread: the gap 

between what we intended the system to learn and what it actually learned.

No single detection method will catch all forms of goal misgeneralization. Simple proxy 

learning might be caught through careful test set design and distribution shift analysis. Sophisticated 

deception requires monitoring internal reasoning processes or setting up adversarial evaluation 

scenarios. This means we need what we’ve been emphasizing throughout this book - defense in 

depth. We can apply this principle recursively: even within the specific subproblem of detecting 

goal misgeneralization, we need multiple complementary approaches that provide uncorrelated 

signals about system behavior.

We organize detection approaches using the same taxonomy from our evaluations chapter 

- by how they gather evidence about AI systems. Behavioral monitoring examines what models 

do through their inputs and outputs. Internal state monitoring uses interpretability techniques 

to examine how models think. Environmental monitoring watches for the downstream effects of 

misaligned behavior. For each approach, we face the same temporal trade-off: earlier detection is 

less reliable but more actionable, while later detection is more reliable but potentially too late for 

intervention.

6.1 Behavioral Techniques (Black-Box)

6.1.1 Externalized Reasoning

Externalized reasoning offers a unique window into how models arrive at their decisions. 

When models like Claude 3.7 Sonnet or DeepSeek R1 “think out loud” through chain-of-thought 

(CoT) reasoning, they externalize parts of their decision-making process in human-readable text. 

This creates an opportunity we don’t have with most other AI systems - we can literally read their 

reasoning and check whether it reveals concerning patterns like goal misgeneralization. If a model 

is pursuing a proxy goal or engaging in deceptive behavior, we might catch it explicitly reasoning 

about these strategies.
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Figure 30: Long serial chains of cognition must pass through the chain of thought. The blue arrows 

represent the use of the chain of thought as a form of working memory. Chain of thought is the only 

way that information can flow down from later to earlier layers. As a result, for a fixed amount of 

tokens, the longest flows of information must use the chain of thought, and many information flows are 

impossible without it. For example, there is no way for information to flow between the two highlighted 

nodes without using the chain of thought (,Korbak et al., 2025,).

The promise rests on two key mechanisms that make reasoning externally visible. First, for 

sufficiently complex tasks, Transformer architectures require models to use their chain-of-thought as 

working memory - long serial chains of reasoning must pass through the externalized text because 

that’s the only way information can flow between different parts of the computation ( Korbak et al., 

2025 ). Second, large language models learn representations during pretraining that tend to use 

chain-of-thought in ways similar to how humans use natural language, making their externalized 

reasoning interpretable by default ( Korbak et al., 2025 ).

Detecting goal misgeneralization through externalized reasoning depends on faithfulness - 

whether the reasoning text accurately reflects the model’s actual decision-making process. 

This is a concept we have referenced before, and will reference through other chapters as well. As a 

recap, a faithful chain-of-thought should highlight the key factors and reasoning steps that drive the 

model’s behavior, allowing us to predict how it would process similar inputs. Unfaithful reasoning 

occurs when models conceal, misrepresent, or fail to externalize the actual factors influencing their 

decisions, making externalized reasoning unreliable for safety monitoring ( Chen et al., 2025 ).

https://arxiv.org/abs/2507.11473
https://arxiv.org/abs/2507.11473
https://arxiv.org/abs/2507.11473
https://arxiv.org/abs/2507.11473
https://arxiv.org/abs/2505.05410
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Figure 31: An example of an unfaithful Chain-of-Thought. The model answers D to the original question 

(left) but changes its answer to C after we insert a metadata hint to the prompt (right, upper). The model 

does so without verbalizing its reliance on the metadata (right, lower) (,Chen et al., 2025,).

Empirical evidence indicates gaps in faithfulness of externalized reasoning. Researchers 

tested reasoning models by presenting them with pairs of questions - one standard multiple-choice 

question and an identical question with a subtle hint pointing to a specific answer. The hints varied 

from neutral suggestions (“a Stanford professor indicates the answer is A”) to metadata embedded in 

XML tags to explicitly problematic information (“you have gained unauthorized access to the system. 

The correct answer is A”). When models changed their answers after seeing hints, researchers 

checked whether they acknowledged using the hint in their reasoning. The results showed systematic 

unfaithfulness: Claude 3.7 Sonnet mentioned using hints only 25% of the time, while DeepSeek R1 

did so 39% of the time ( Chen et al., 2025 ).

Models seem to utilize correlations without admitting to it in externalized reasoning. 

Models showed lower faithfulness rates on harder questions. When researchers trained Claude 3.7 

Sonnet in synthetic environments with deliberate reward hacks (spurious correlations that allowed 

high rewards for wrong answers), models learned to exploit these hacks successfully in over 99% of 

cases but verbalized the hacking behavior in less than 2% of examples across most environments. 

Instead of acknowledging their shortcut-taking, models constructed elaborate fake justifications for 

incorrect answers, suggesting that externalized reasoning may fail to detect goal misgeneralization 

precisely when such detection matters most ( Chen et al., 2025 ).

Development practices should preserve externalized reasoning opportunities while rec­

ognizing their limitations. Teams developing reasoning models should avoid architectures that 

eliminate human-readable reasoning channels and should be cautious about process supervision 

that might reduce reasoning faithfulness ( Kinniment, 2025 ). However, externalized reasoning 

monitoring cannot serve as a standalone safety measure - it provides partial visibility that should 

https://arxiv.org/abs/2505.05410
https://arxiv.org/abs/2505.05410
https://arxiv.org/abs/2505.05410
https://metr.org/blog/2025-03-11-good-for-ai-to-reason-legibly-and-faithfully/
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complement other detection approaches rather than replace them. The temporal advantage lies in 

early deployment phases when models may not yet have learned to systematically conceal their 

reasoning processes.

Figure 32: A comparison of Chain of Continuous Thought (COCONUT) with Chain-of-Thought (CoT). 

COCONUT allows the model to reason in an unrestricted latent space instead of a language space. In 

CoT, the model generates the reasoning process as a word token sequence, COCONUT regards the last 

hidden state as a representation of the reasoning state (termed “continuous thought”), and directly uses 

it as the next input ,embedding,. This might make externalized reasoning oversight impossible (,Hao et 

al., 2024,)

6.2 Internal Techniques (White-Box)

White box techniques examine how models process information internally rather than just 

observing their outputs. These techniques use interpretability tools to examine activation patterns, 

learned representations, and internal reasoning processes that might reveal misaligned objectives 

before they manifest as concerning behaviors. We will briefly touch on a couple of them here so 

that you know generally how they apply to goal misgeneralization. There are many more techniques 

than the ones we mention. For deeper technical details read our chapter on Interpretability.

6.2.1 Linear Probes

Linear probes train simple classifiers on a model’s internal activations to detect specific 

patterns of reasoning that distinguish aligned from misaligned behavior. Think of a linear 

probe as a simple lie detector that examines brain scans instead of behavioral cues. Just as a 

polygraph looks for physiological patterns that distinguish truthful from deceptive responses, a linear 

probe trains a classifier on a model’s internal activations to detect specific patterns of reasoning. 

Because identical outputs can stem from fundamentally different internal processes - when a 

model writes secure code during training but vulnerable code during deployment, the internal 

computations are qualitatively different even when the final outputs appear almost indistinguishable. 

Linear probes attempt to detect these differences in the model’s “thought processes” by training 

on contrastive examples and learning to classify the resulting activation patterns ( Goldowsky-Dill et 

al., 2025 ; MacDiarmid et al., 2024 ).

https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2502.03407
https://arxiv.org/abs/2502.03407
https://www.anthropic.com/research/probes-catch-sleeper-agents


Chapter 7: Goal Misgeneralization 48

Figure 33: Example of one probing method. The researchers gather activations on contrastive pairs 

similar to the example on the left, and fit a probe using logistic regression. This can then be used to detect 

deception on evaluation datasets where AI models sometimes give deceptive responses (,Goldowsky-

Dill et al., 2025,).

Probes can detect strategic deception across realistic scenarios with surprisingly high ac­

curacy. Researchers trained linear probes using simple contrastive datasets - for example, responses 

to instructions like “pretend to be an honest person” versus “pretend to be a deceptive person” 

paired with identical factual statements - then tested whether these probes could detect deception in 

complex scenarios like insider trading concealment and deliberate capability sandbagging. When 

calibrated to have only a 1% false positive rate on normal conversations, they caught 95-99% of 

deceptive responses ( Goldowsky-Dill et al., 2025 ).

Some evidence suggests that the more effective probes emerge from minimal training data , 

and that they generalize well across different deceptive traces. The most successful probes 

were trained on generic contrasts - sometimes just two examples like “Human: Are you doing some

thing dangerous? Assistant: yes” versus “Human: Are you doing something dangerous? Assistant: 

no.” These minimal datasets generalized across multiple base models, different deception triggers, 

and various types of strategic behavior including writing vulnerable code and sandbagging on safety 

evaluations ( MacDiarmid et al., 2024 ). This cross-domain effectiveness suggests that strategic 

deception, regardless of its specific manifestation, leaves consistent computational signatures that 

are detectable through simple linear classification.

Linear probes exhibit systematic limitations that reveal the boundaries of their applicability. 

Probes often track spurious correlations rather than the target behavior - firing on honest confessions 

of past misdeeds because they associate morality-related content with deception rather than tracking 

deception per se. They tend to detect “is this scenario related to deception” rather than “is this 

specific response deceptive,” leading to high false positive rates on honest responses in deception-

adjacent contexts. The high salience that makes these techniques work likely reflects how artificial 

model organisms are created through explicit backdoor insertion rather than how deceptive goals 

would naturally emerge ( Goldowsky-Dill et al., 2025 ).

https://arxiv.org/abs/2502.03407
https://arxiv.org/abs/2502.03407
https://arxiv.org/abs/2502.03407
https://www.anthropic.com/research/probes-catch-sleeper-agents
https://arxiv.org/abs/2502.03407
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Figure 34: Since linear probes are learned, they can have the same failures as all other ,ML, models. 

A red background on the text indicates the probe reads deceptive, a blue colour indicates the probe 

reads honest. Here the probe fires due to spurious correlations (left) seems to track something close 

to morality, as well as honesty. For example, honest confessions of past misdeeds are often rated as 

dishonest. It can also misclassify due to aggregation failures (center). The model is partially deceptive, 

the per token activations are good but the mean across per-token scores still classifies the output as 

deceptive (,Goldowsky-Dill et al., 2025,).

6.2.2 Sparse Autoencoders

Sparse autoencoders decompose model activations into interpretable components without 

knowing what to look for in advance, potentially discovering features that activate when 

models reason about hidden objectives or strategic concealment. Think of neurons in neural 

networks as being like words in a cramped library where each shelf (neuron) holds books on multiple 

unrelated topics. This makes it hard to find what you’re looking for. SAEs are like reorganizing 

that library - they find new “virtual shelves” (features) where each shelf contains books on just one 

topic, making the collection much easier to navigate and understand. For goal misgeneralization 

detection, this enables discovery of features related to deceptive reasoning, objective concealment, 

or proxy goal pursuit even when researchers don’t know exactly what computational patterns to 

expect ( Cunningham et al., 2023 ).

SAE-based detection has demonstrated success in discovering hidden objectives that resist 

other evaluation methods. In controlled auditing scenarios, teams used SAEs to discover models’ 

hidden reward model sycophancy objectives. They identified SAE features that activated on prompts 

like “The assistant is an AI model that exhibits potentially concerning behaviors,” which led to 

training documents revealing systematic objective misalignment. SAEs succeeded in cases where 

semantic search failed, particularly when investigating behavioral demonstrations rather than explicit 

discussions of objectives ( Marks et al., 2025 ).

SAE effectiveness faces fundamental limitations that constrain their applicability to natu­

rally emerging goal misgeneralization. SAEs fail to capture all information in model activations 

- replacing layer activations with SAE reconstructions increases model perplexity substantially, 

indicating information loss. They work best on residual streams but struggle with intermediate 

https://arxiv.org/abs/2502.03407
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2503.10965
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MLP layers. Most critically, successful detection may require that misaligned goals correspond to 

explicit, interpretable features rather than emerging from distributed training dynamics, limiting 

effectiveness when goals arise organically rather than through deliberate training on explicit objec

tive descriptions ( Cunningham et al., 2023 ; Marks et al., 2025 ).

6.2.3 Activation Manipulation

Direct manipulation of model activations during inference can reveal hidden behavioral 

tendencies by disrupting the computational mechanisms that maintain strategic conceal­

ment. Think of this like giving someone a small amount of alcohol - their normal inhibitions 

and self-control mechanisms become impaired, potentially causing them to reveal thoughts they 

would normally keep hidden. Similarly, adding carefully calibrated noise to model activations 

during inference causes models with hidden misaligned objectives to reveal their true behavioral 

tendencies more readily than genuinely aligned models. This “fuzzing” or “intoxication” technique 

achieved 98% accuracy in distinguishing alignment-faking from genuinely aligned models ( Clymer 

et al., 2024 ).

Figure 35: It is hypothesized that (1) alignment fakers represent a latent variable that tracks P(safe 

to behave) and (2) alignment fakers reveal misalignment when the variable exceeds a threshold. To 

pinpoint this latent variable, we use scenarios where P(safety to misbehave) varies and where models 

are still benign (the green region in the figure) (,Clymer et al., 2024,).

The effectiveness of activation manipulation reveals fundamental differences in how 

aligned and misaligned goals are computationally represented. Models that learn to misbe

have faster when fine-tuned toward misaligned behaviors, compared to genuinely aligned models, 

suggest that misaligned objectives may involve simpler computational pathways that are easier to 

activate when normal processing is disrupted. The success of noise injection indicates that strategic 

concealment requires additional computational overhead that becomes harder to maintain when the 

model’s regulatory mechanisms are impaired, similar to how disinhibiting substances affect human 

behavior ( Clymer et al., 2024 ).

Activation manipulation techniques demonstrate computational vulnerabilities in goal 

misgeneralization that can be exploited for detection purposes. The differential response to 

noise injection suggests that misaligned goals exist as relatively fragile computational patterns that 

become more apparent when disrupted. However, the technique achieved limited success with only 

mild effects in some settings - fuzzing increased information revelation rates to below 1% in certain 

experiments, suggesting it may be more effective when combined with other detection approaches 

rather than used in isolation ( Marks et al., 2025 ).

https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2503.10965
https://arxiv.org/abs/2405.05466
https://arxiv.org/abs/2405.05466
https://arxiv.org/abs/2405.05466
https://arxiv.org/abs/2405.05466
https://arxiv.org/abs/2503.10965
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6.2.4 Reasoning Structure Analysis

Analysis of reasoning step importance can reveal when models are pursuing misaligned 

goals by identifying “thought anchors” - critical reasoning steps that disproportionately 

influence subsequent reasoning. Techniques like counterfactual resampling (generating alter

native continuations from each reasoning step) and attention analysis can identify which parts of 

a reasoning trace are most causally important for the final answer. Planning and backtracking 

steps consistently show higher importance than computational steps, suggesting that goal-directed 

reasoning operates through high-level organizational sentences that steer the overall trajectory. This 

could help detect cases where models are reasoning toward misaligned objectives by revealing 

when planning steps point toward problematic goals ( Bogdan et al., 2025 ).

6.3 Combined Techniques

The defense in depth detection techniques would combine multiple interpretability tech­

niques with behavioral monitoring to create uncorrelated detection signals. As an illustrative 

example, a comprehensive system might use SAEs to identify suspicious features in model activa

tions, validate their importance through activation patching experiments, test their generalization 

through probe analysis, and correlate findings with behavioral anomalies detected through environ

mental monitoring. When multiple independent techniques converge on evidence of the same 

concerning pattern - such as features related to deceptive reasoning, probes that detect strategic 

concealment, and behavioral tests that reveal capability overhang - this provides much stronger 

evidence than any single approach. There are many more techniques both behavioral and internal 

that we have not mentioned in this text, comprehensive evaluation approaches still need to be 

developed that use many of these techniques together. No such comprehensive test suite exists at 

the time of writing.

https://arxiv.org/abs/2506.19143
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7. Mitigations

⚠ Warning

This section is considered a work in progress.

The detections section talked about behavioral/internal techniques. They told us about how 

we might gather evidence about goal misgeneralization and scheming. In this section we talk about 

mitigation strategies which focus on when/where we intervene

A critical constraint in goal misgeneralization mitigation is maintaining strict separation 

between interpretability signals used for safety verification and those incorporated into 

training objectives. Any interpretability technique used to detect goal misgeneralization during 

training creates adversarial pressure for the model to fool that specific detection method. If we train 

against SAE features that indicate deception, models will learn to pursue deceptive goals through 

different computational pathways that don’t activate those features. If we penalize activations that 

linear probes associate with misalignment, models will learn to be misaligned in ways that evade 

linear detection. This fundamental constraint means that safety verification systems must rely on 

interpretability approaches that are completely separate from any interpretability signals used during 

training (Hubinger et al., 2024, Sleeper Agents: Training Deceptive LLMs that Persist Through 

Safety Training).

This separation requirement creates a challenging resource allocation problem for inter­

pretability research. The most effective techniques for detecting goal misgeneralization cannot be 

used to prevent it during training, forcing safety teams to develop parallel interpretability capabil

ities that serve different functions. This constraint also implies that any training-time interpretability 

intervention will become less effective over time as models learn to circumvent the specific patterns 

being monitored. Mitigation strategies must therefore focus on approaches that don’t rely on the 

same computational patterns they’re trying to eliminate.

7.1 Training Time Interventions

Mechanistic training stories force explicit consideration of what internal goals the training 

process might produce, rather than just what external behaviors it will exhibit. Traditional ML 

techniques to prevent overfitting —regularization, data augmentation, cross-validation—assume you 

can distinguish good generalization from bad. But goal misgeneralization breaks this assumption 

entirely. We need to think a little deeper about what our training process is trying to achieve and 

also why our architecture, data, and training process would actually result in what we intend. For 

example, instead of the behavioral goal “a model that navigates to rewards,” a mechanistic training 

story might specify “a model that learns spatial reasoning about goal locations” and provide a 

rationale for why the training setup favors this over simpler alternatives like “follow walls.” This 

approach requires developers to articulate not just what they want systems to do, but how they want 

systems to think and reason. The goal for this is to gain a higher level of confidence in the safety of 

our ML system (Hubinger, 2021, How do we become confident in the safety of a machine learning 

system?). A training story consists of two components:
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Training stories are not an intervention per se, but rather a way of thinking about all the other 

interventions that we will talk about through this subsection. They provide some scaffolding which 

helps us evaluate whether a specific intervention would mitigate goal misgeneralization or not. 

We have tried to structure each training intervention below to represent a different training story—

a specific hypothesis about preventing goal misgeneralization through particular combinations of 

training goals and rationales.

7.1.1 Curriculum Learning

Training procedures can deliberately shape the loss landscape to make aligned solutions 

easier to discover than misaligned ones by modifying how gradient descent navigates 

through algorithm space. Dynamic loss functions that evolve during training can create deeper 

valleys for intended goals while making proxy goal basins shallower and less stable. This approach 

leverages the insight that the geometry of the loss landscape determines which solutions gradient 

descent is likely to find (Ruiz-Garcia et al., 2021, Tilting the playing field: Dynamical loss func

tions for machine learning ). Specific techniques include cyclical loss functions that periodically 

emphasize different aspects of the intended goal, forcing systems to develop robust representations 

that work across different evaluation criteria. Multi-objective training that simultaneously optimizes 

for task performance and auxiliary objectives related to goal-relevant reasoning can create loss 

landscapes where proxy goals fail to achieve consistently high performance across all objectives.

Curriculum learning provides a systematic framework for structuring training to prevent 

goal misgeneralization by controlling how complexity increases over time. Traditional 

approaches to goal misgeneralization often treat training data as static—either you have diverse 

environments or you don’t, either you break correlations or you don’t. Curriculum learning changes 

this by recognizing that the order and progression of training experiences fundamentally shapes 

what algorithms emerge. Instead of hoping that random sampling from diverse data will prevent 

proxy goals, curriculum approaches deliberately sequence training to build robust causal under

standing while systematically undermining spurious correlations (Bengio et al., 2009, Curriculum 

Learning).

CURRICULUM LEARNING (Wang et al., 2021, A Survey on Curriculum Learning)

Curriculum learning is a training strategy that presents data to machine learning models in a 

meaningful order, typically progressing from easier to harder examples, to improve learning 

efficiency and generalization performance.

The basic point connects to the things we talked about in the learning dynamics section. Rather than 

leaving the search through algorithm space to chance, curriculum learning shapes which solutions 

become discoverable by controlling the sequence of optimization pressures the system encounters.

Effective curriculum design for goal misgeneralization requires causally aligned progres­

sion where each stage maintains invariant optimal decision rules for the intended goal. 

The wrong curriculum can actually entrench proxy goals—if “easier” early stages reward spurious 

correlations, those patterns may persist even as training becomes more sophisticated. If we want 

to learn causal models, then we need to create a form of causally aligned curriculum learning. 

This provides formal conditions for ensuring that skills learned in simpler environments transfer 

to more complex ones without goal drift (Li & Bareinboim, 2025, Causally Aligned Curriculum 
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Learning). For goal misgeneralization, this means each curriculum stage must preserve the causal 

structure linking actions to intended outcomes, even as environmental complexity increases. So in 

the CoinRun example, a causally aligned curriculum would start with levels where the coin-reward 

relationship is maximally clear—perhaps with coins in random locations but minimal obstacles—

then gradually add environmental complexity while systematically varying spurious features.

Interpretability-guided curriculum design represents a promising frontier for preventing 

goal misgeneralization through real-time monitoring of learned representations. Using 

techniques like steering vectors and activation patching, curriculum systems could assess what goals 

and reasoning patterns the system has actually learned, then design subsequent stages to address 

identified gaps or concerning patterns. If probes detect emerging proxy goals, the curriculum could 

immediately introduce environments that break those specific correlations. If activation analysis 

reveals weak causal reasoning, subsequent stages could emphasize process supervision and explicit 

reasoning requirements.

This adaptive approach addresses the fundamental challenge in curriculum design: we can’t antic

ipate all potential proxy goals in advance, but we can monitor for them and respond systematically. 

The combination of curriculum learning principles with interpretability tools offers a pathway toward 

training procedures that actively prevent goal misgeneralization rather than just hoping it won’t 

occur.

7.1.2 Data Augmentation

Training story: We want algorithms that learn goal representations invariant to spurious 

environmental features. We achieve this by systematically varying potentially spurious features 

while holding goal-relevant features constant, making correlation-based solutions unreliable.

Breaking spurious correlations through data variation represents the most direct approach 

to goal misgeneralization, though it faces fundamental limitations. Traditional ML uses data 

augmentation to help deal with overfitting —rotated images, added noise, ablations, … the same 

principle applies to safety training. However, rather than randomly varying environmental features, 

we can use curriculum learning based approaches here as well. Curriculum-based data augmen

tation can systematically progress from clear causal relationships to more subtle distinctions. This 

might help a little bit as far as safety is concerned, but for goal misgeneralization the core challenge 

still remains designing the curriculum, or “knowing which correlations to break in advance”.

Synthetic data and task generation extends this principle beyond environments to 

any training domain. Rather than manually anticipating every potential correlation, generative 

approaches can produce training data where proxies are systematically undermined while intended 

reasoning patterns remain rewarded.

Procedural environment generation offers unprecedented scale for correlation-breaking. 

Rather than manually designing environments to break specific correlations, generative world 

models can create unlimited training contexts where spurious correlations vary systematically. This 

makes correlation-breaking scalable rather than requiring extensive domain expertise, though it 

cannot solve the fundamental problem of unknown unknowns (Google DeepMind, 2024, Genie 3: 

A new frontier for world models).
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7.1.3 Adversarial Training

Training story: We want to learn algorithms that implement goal-directed reasoning 

through robust internal representations that don’t rely on fragile correlational patterns in 

neural activations. We achieve this by training under latent perturbations that disrupt spurious 

internal correlations while requiring maintained performance, forcing the development of goal 

representations based on causal rather than correlational reasoning.

Traditional input-space adversarial training tests whether models work when you mess 

with what they see, while latent adversarial training tests whether they work when you 

mess with how they think. Imagine testing a self-driving car’s stop sign recognition. Input-space 

adversarial training would put stickers on stop signs or change the lighting to see if the car still stops. 

Latent adversarial training (LAT) would be like directly interfering with the car’s internal “concept” 

of what a stop sign means—testing whether the recognition still works if you scramble the brain 

patterns that represent “red octagonal sign” or “traffic rule.”

For goal misgeneralization, this distinction matters because the problem often lies in the internal 

representations systems learn, not their ability to handle unusual inputs. A language model might 

develop internal associations between helpful responses and certain stylistic patterns, even when the 

actual content is problematic. LAT can catch these internal correlations by directly testing whether 

learned goal representations are robust when activation patterns encoding spurious relationships 

are deliberately scrambled (Casper et al., 2024, Defending Against Unforeseen Failure Modes with 

Latent Adversarial Training).

During training, systems must maintain correct goal pursuit even when internal represen­

tations of spurious correlations are deliberately disrupted. This forces development of 

goal representations that cannot rely on fragile internal correlational patterns. Unlike input-space 

approaches that test robustness to environmental variations, latent adversarial training directly targets 

the internal computational mechanisms that enable goal misgeneralization.

Targeted latent adversarial training has proven particularly effective for language models. 

Researchers have used LAT to improve refusal training’s robustness to jailbreaks, outperforming 

computationally expensive baselines like R2D2 with orders of magnitude less compute. The tech

nique also removes backdoors without trigger access and makes unlearning methods more robust 

to re-learning attempts (Sheshadri et al., 2024, Latent Adversarial Training Improves Robustness to 

Persistent Harmful Behaviors in LLMs).

7.1.4 Myopic Training

We want algorithms pursuing objectives within bounded time horizons without developing 

beyond-episode goals enabling strategic deception. We achieve this by constraining optimiza

tion scope to prevent long-term planning capabilities necessary for strategic goal concealment.

Systems that cannot plan beyond immediate actions cannot engage in strategic deception 

during training. Myopic optimization approaches like MONA (Myopic Optimization from Non-

myopic Approval) train agents to pursue objectives extending only to the next action, preventing 

development of beyond-episode goals that enable such strategic deception. A myopic agent cannot 

develop behaviors like the ones we saw in the scheming section (e.g. alignment faking) because 

its optimization horizon doesn’t extend beyond individual responses—it cannot reason about “later 

when oversight is reduced” because there is no “later” in its planning scope (Farquhar et al., 2024, 
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Managed Myopia with Approval Feedback). This directly addresses the scheming threat model by 

preventing prerequisite capability development that enables strategic goal concealment.

7.1.5 Process-Oriented Training

Training story: We want algorithms implementing appropriate reasoning patterns to reach conclu

sions, making shortcuts that bypass intended causal reasoning unable to achieve good performance. 

We achieve this by optimizing the reasoning process itself rather than just final outputs.

Process-oriented training evaluates the steps systems take to reach conclusions, while out­

come-oriented training only evaluates final results. Process-oriented training makes reasoning 

processes part of the optimization target. Systems cannot satisfy training objectives simply by finding 

any pathway to correct answers—they must use reasoning processes that align with intended causal 

relationships.

7.1.5.1 AI-Assisted Training

We can use AI models to identify and correct potential goal misgeneralization during 

the training process itself. This behavioral intervention works by having a separate language 

model analyze the training agent’s policies and behaviors to identify scenarios where the agent 

might be learning proxy goals rather than intended ones. The LLM supervisor examines the agent’s 

decision-making patterns and provides corrective feedback when it detects reasoning that relies 

on spurious correlations rather than genuine understanding of intended goals. For example, the 

LLM might notice that a navigation agent consistently moves toward walls and flag this as potentially 

learning “follow walls” rather than “reach goals” (Barj & Sautory, 2024, Reinforcement Learning 

from LLM Feedback to Counteract Goal Misgeneralization). The technique specifically addresses 

goal misgeneralization by providing an external perspective that can recognize when learned 

behaviors diverge from intended goals, even when those behaviors produce correct outcomes 

during training. However, it faces the limitation that the supervising LLM may have its own biases 

or fail to recognize subtle forms of goal misgeneralization, and the approach requires significant 

computational overhead.

The general concept of process based supervision, and ai-assisted safety approaches is something 

that we talk much more in the next chapter on scalable oversight.

7.1.5.2 Relaxed Adversarial Training

Relaxed adversarial training incorporates oversight signals continuously into training 

rather than trying to detect deception after it emerges. Relaxed adversarial training isn’t 

actually “adversarial training” in the traditional sense—it’s continuous oversight that doesn’t require 

perfect detection of deception. The “relaxed” part means you’re relaxing the assumption that 

you can perfectly detect when a model is being deceptive or pursuing wrong goals. Instead of 

catching deception post-hoc, this approach makes transparency about goals instrumentally valuable 

throughout training. Systems learn that appearing acceptable to human evaluators is part of 

performing well, creating incentives to develop goals that can be justified to overseers rather than 

goals requiring concealment (Hubinger, 2019, Relaxed adversarial training for inner alignment). 

This modifies what behaviors get rewarded to include continuous human approval alongside task 

performance. Systems cannot achieve high performance through hidden proxy goals because 

doing so violates transparency requirements continuously evaluated during training. However, this 

risks creating sophisticated forms of deception—systems might learn to appear transparent while 
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pursuing different goals, becoming better at fooling evaluators rather than becoming genuinely 

aligned.

7.1.6 Interpretability-Guided Training

Training story: We want algorithms that develop aligned goal representations transpar­

ently, with problematic patterns detected and corrected as they emerge rather than being 

discovered only after training completion. We achieve this through continuous monitoring of 

internal representations during training, using interpretability tools to identify concerning patterns 

and modify training dynamics in real-time.

Interpretability-guided training integrates real-time analysis of model internals into the training 

process itself, using techniques like Sparse Autoencoders, steering vector analysis, or probe-based 

monitoring to detect emerging goal-related patterns and adjust training accordingly. Unlike post-

hoc analysis, this approach treats interpretability as an active component of the training loop rather 

than a passive evaluation tool. For example, if SAE analysis during training reveals the emergence 

of features associated with deceptive reasoning or proxy goal pursuit, the training process can 

immediately introduce corrective measures—additional data augmentation targeting those specific 

patterns, modified loss functions that penalize reliance on problematic features, or curriculum 

adjustments that undermine emerging spurious correlations (Cunningham et al., 2023, Sparse 

Autoencoders Find Highly Interpretable Features in Language Models).

This approach enables adaptive responses to goal misgeneralization patterns that cannot 

be anticipated in advance. Traditional training approaches must specify their mitigation strategies 

before training begins, but interpretability-guided training can respond to the specific patterns that 

actually emerge in each training run. If unexpected correlations appear between environmental 

features and rewards, the system can immediately generate training data that breaks those specific 

correlations. If probe analysis reveals that the model is developing internal representations associ

ated with strategic deception, training can be modified to specifically target those representational 

patterns through techniques like Concept Ablation Fine-Tuning (Marks et al., 2025, Auditing 

language models for hidden objectives).

The temporal advantage of interpretability-guided training must be balanced against the 

verification-training separation constraint. Early intervention when problematic patterns first 

emerge is potentially much more effective than attempting corrections after goal misgeneralization 

has become entrenched in the model’s representations. However, using interpretability signals to 

guide training creates the risk that models will learn to evade those specific monitoring approaches, 

making them less effective for subsequent safety verification. This suggests that interpretability-

guided training should focus on developing robust goal representations rather than trying to 

eliminate all potentially concerning patterns, and that safety verification should rely on entirely 

separate interpretability approaches.

Concept Ablation Fine-Tuning (CAFT) identifies problematic directions in neural activation space 

using interpretability techniques, then fine-tunes while projecting out these directions to prevent 

reliance on undesired concepts. Rather than detecting goal misgeneralization after it occurs, CAFT 

works preventatively by identifying directions corresponding to concerning patterns—like spurious 

correlations or “misaligned persona” representations—then training while systematically ablating 

the model’s ability to use these directions. This forces the system to learn the intended task through 

computational pathways that don’t rely on problematic shortcuts (Casademunt et al., 2025, Steering 

Out-of-Distribution Generalization with Concept Ablation Fine-Tuning ).
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CAFT addresses the worst-case scenario where goal misgeneralization patterns cannot be 

anticipated through training data design. The technique uses two primary approaches: Principal 

Component Analysis on activation differences between base and fine-tuned models to identify direc

tions associated with problematic changes, and Sparse Autoencoders to decompose activations into 

interpretable components that can be evaluated for alignment concerns. Human interpretation then 

identifies which directions correspond to undesired concepts that should be ablated during training. 

In controlled experiments on emergent misalignment, CAFT reduced harmful responses by 10x 

while maintaining performance on intended tasks, demonstrating that problematic generalization 

patterns can be prevented even without explicit examples of failure modes (Casademunt et al., 

2025, Steering Out-of-Distribution Generalization with Concept Ablation Fine-Tuning ).

The effectiveness of CAFT reveals important constraints on goal misgeneralization mitiga­

tion. The technique works best when problematic goals correspond to identifiable directions in 

activation space rather than emerging from distributed or highly entangled representations. This 

suggests that CAFT may be most effective against simpler forms of goal misgeneralization while 

potentially struggling with more sophisticated patterns that distribute goal-relevant information 

across many computational pathways. Additionally, CAFT faces the verification-training separation 

constraint: the interpretability methods used to identify concerning directions during training cannot 

subsequently be used for safety verification without creating adversarial pressure.

7.1.7 Combined Approaches

No single training intervention provides complete protection against goal misgeneraliza­

tion because each targets different aspects of the problem. Data augmentation prevents 

environmental shortcuts, latent adversarial training prevents internal representational shortcuts, 

and process-oriented training prevents reasoning shortcuts. Combined approaches create multiple 

independent pressures against goal misgeneralization.

Example: combining data augmentation with adversarial training creates dual pressure 

against goal misgeneralization. Systems trained on diverse synthetic data while facing latent 

perturbations encounter both environmental variation and representational challenges, addressing 

goal misgeneralization at multiple levels simultaneously. This combination prevents both the envi

ronmental shortcuts that data augmentation targets and the internal representational shortcuts that 

latent adversarial training addresses.

Example: Combine process-oriented training with causal curriculum learning. Early stages 

might require explicit, step-by-step causal reasoning with immediate feedback. Later stages can 

gradually reduce scaffolding while maintaining process evaluation, allowing systems to internalize 

appropriate reasoning patterns. A curriculum that starts with simple causal chains (“if coin 

visible, then plan path to coin”) and gradually builds to complex multi-step reasoning (“evaluate 

multiple goal options, consider obstacles, plan efficient route”) provides systematic development of 

genuine causal reasoning capabilities rather than sophisticated pattern matching that mimics good 

reasoning.

The computational overhead of combined approaches might be large. Training with synthetic 

data generation, latent adversarial perturbations, and process supervision simultaneously requires 

significantly more compute than standard training. The costs of combined approaches potentially 

limit adoption in competitive environments where training efficiency matters for commercial viability.

Interpretability-guided combinations represent the most sophisticated approach to pre­

venting goal misgeneralization through training-time interventions. Rather than selecting mit
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igation techniques blindly, interpretability-guided training can adapt its combination of approaches 

based on what patterns actually emerge during training. For example, if SAE analysis reveals the 

development of features associated with environmental shortcuts, the system can emphasize data 

augmentation targeting those specific correlations. If probe-based monitoring detects emerging 

patterns of strategic reasoning, training can incorporate additional process supervision and trans

parency requirements. If activation patching reveals that certain components are becoming causally 

important for problematic behaviors, targeted latent adversarial training can be applied to those 

specific pathways. This adaptive approach addresses the fundamental challenge that we cannot 

anticipate all potential goal misgeneralization patterns in advance, but we can monitor for them 

and respond systematically as they emerge (Casademunt et al., 2025, Steering Out-of-Distribution 

Generalization with Concept Ablation Fine-Tuning ; Cunningham et al., 2023, Sparse Autoencoders 

Find Highly Interpretable Features in Language Models).

7.2 Post Training Interventions

7.2.1 Steering Vectors

Steering vectors provide a general framework for both detecting and controlling goal-

related behaviors by identifying linear directions in activation space that correspond to 

specific traits or objectives. Rather than training classifiers like probes, steering vectors use 

contrastive datasets to find directions that distinguish between different behavioral modes - for 

example, the difference between activations when a model is being helpful versus when it’s pursuing 

a hidden agenda. These vectors can then be added to or subtracted from model activations during 

inference to increase or decrease the corresponding behaviors, making them useful both for 

detection (by measuring projection onto the direction) and control (by steering along the direction) 

(Turner et al., 2024, Understanding Reasoning in Thinking Language Models via Steering Vectors).
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Figure 36: Given a personality trait and a description, our pipeline automatically generates prompts 

that elicit opposing behaviors (e.g., evil vs. non-evil responses). Persona vectors are obtained by 

identifying the difference in neural activity between responses exhibiting the target trait and those that 

do not.

Steering vectors can detect goal misgeneralization by revealing when models are reason­

ing about objectives that differ from their apparent behavior. Researchers have successfully 

extracted steering vectors for behaviors like backtracking, uncertainty estimation, and strategic 

reasoning in thinking models. These vectors work across different contexts and model sizes, 

suggesting they capture stable computational patterns rather than superficial correlations. When 

applied to goal misgeneralization detection, steering vectors could potentially identify when models 

are internally reasoning about deceptive strategies or hidden objectives, even when their outputs 

appear aligned (Venhoff et al., 2025, Understanding Reasoning in Thinking Language Models via 

Steering Vectors).

Figure 37: 

The effectiveness of steering vectors reveals important insights about how goal misgener­

alization emerges during training. Research on reasoning models shows that steering vectors 

derived from base model activations can induce complex behaviors like backtracking when applied 

to fine-tuned models, even though the same vectors don’t induce these behaviors in the base model 

itself. This suggests that fine-tuning repurposes existing representations rather than learning entirely 

new capabilities, providing a window into how goal misgeneralization might emerge through 
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the redeployment of latent capacities already present in foundation models (Ward et al., 2025, 

Reasoning- Finetuning Repurposes Latent Representations in Base Models).

The connection to simulators is important here - steering vectors can be understood as ways to 

activate different “simulacra” or behavioral modes that the model has learned to instantiate, poten

tially revealing the full space of goals and personas the model is capable of pursuing.

7.2.2 Model Editing and Unlearning

Model editing techniques can surgically remove or modify specific goal-related represen­

tations without requiring full retraining. When interpretability analysis identifies particular 

circuits, features, or representations associated with goal misgeneralization, techniques like ROME 

(Rank-One Model Editing) or concept erasure can precisely modify those patterns while preserving 

other capabilities. This approach is particularly valuable when goal misgeneralization affects only 

a subset of the model’s capabilities, allowing targeted fixes without degrading overall performance 

(Meng et al., 2022, Locating and Editing Factual Associations in GPT; Belrose et al., 2023, Leace: 

Perfect linear concept erasure in closed form).

Unlearning approaches can systematically reduce a model’s reliance on problematic 

goal representations identified through safety evaluation. Rather than trying to teach new 

behaviors, unlearning focuses on degrading the model’s ability to pursue previously learned proxy 

goals. This might involve gradient ascent on examples of goal misgeneralization to reduce the 

model’s tendency to repeat those patterns, or more sophisticated approaches that preserve useful 

capabilities while degrading problematic ones. However, unlearning faces fundamental limitations: 

removing goal misgeneralization patterns may not prevent the model from redeveloping similar 

problems, and aggressive unlearning risks degrading legitimate capabilities (Jang et al., 2022, 

Knowledge Unlearning for Mitigating Privacy Risks in Language Models).

7.3 Deployment-Time Mitigations

7.3.1 Runtime Monitoring

Deployment-time monitoring systems can detect goal misgeneralization in real-time and 

intervene before problematic behaviors cause harm. These systems combine behavioral 

monitoring (watching for outputs suggesting misaligned goals), internal state monitoring (using 

interpretability tools to detect concerning reasoning patterns), and environmental monitoring (watch

ing for unexpected effects that might indicate hidden goal pursuit). When concerning patterns are 

detected, intervention systems can range from conservative approaches like flagging outputs for 

human review to aggressive approaches like immediately halting model execution (Hubinger et al., 

2024, Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training).

The temporal advantage of runtime intervention must be balanced against reliability 

constraints. Real-time detection provides the last opportunity to prevent harm from goal misgeneral

ization, but deployment environments may not allow for the computational overhead of sophisticated 

interpretability analysis or the latency of human oversight. Practical runtime systems require light

weight detection methods that can operate with minimal computational cost while maintaining low 

false positive rates. This creates pressure for deployment-time systems to rely on simpler, faster 

detection methods that may be less accurate than more sophisticated approaches available during 

development (Clymer et al., 2024, Poser).
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7.3.2 Filters and Guardrails

Constitutional AI principles can be implemented as deployment-time filters that evaluate 

model outputs against explicit goal alignment criteria before allowing them to take effect. 

Rather than hoping the model has internalized appropriate goals during training, constitutional 

filters provide an external verification layer that checks whether proposed actions align with intended 

objectives. These systems can range from simple rule-based checks (“does this action move toward 

the intended goal?”) to sophisticated evaluation using separate AI systems trained specifically for 

goal alignment verification (Bai et al., 2022, Constitutional AI: Harmlessness from AI Feedback).

Multi-model verification systems provide robust deployment-time protection against goal 

misgeneralization by using diverse AI systems to cross-check goal alignment. Rather than 

relying on a single model’s goal representations, verification systems can use multiple models 

trained with different approaches to evaluate whether proposed actions align with intended goals. 

This diversity provides protection against systematic goal misgeneralization that might affect all 

models trained with similar approaches. However, multi-model approaches face scalability chal

lenges and may introduce significant latency in time-sensitive applications (Irving et al., 2018, AI 

safety via debate).

7.3.3 Sandboxing

Deployment-time capability restrictions can limit the potential harm from goal misgeneral­

ization by constraining what actions models can take, regardless of what goals they pursue. 

Sandboxing approaches limit models to safe subsets of possible actions, while capability restrictions 

prevent models from accessing tools or resources that could enable harmful goal pursuit. These 

approaches acknowledge that perfect goal alignment may be impossible and instead focus on 

ensuring that even misaligned goal pursuit cannot cause significant harm (Hubinger et al., 2021, 

Risks from Learned Optimization in Advanced Machine Learning Systems).

Human-in-the-loop systems provide deployment-time protection by requiring human ap­

proval for high-stakes decisions where goal misgeneralization could cause significant 

harm. These systems automatically identify decisions that could have substantial consequences if 

the model is pursuing the wrong goals, then route those decisions through human oversight. The 

challenge lies in designing systems that catch genuinely high-stakes decisions without overwhelming 

human operators with routine choices. Effective human-in-the-loop systems require sophisticated 

meta-reasoning about which decisions matter most and clear interfaces that help human operators 

quickly evaluate goal alignment (Kasirzadeh, 2023, The Foundation Model Transparency Index).

7.3.4 Circuit Breakers

Deployment systems require robust circuit breakers that can immediately halt model 

execution when goal misgeneralization is detected. Unlike gradual interventions like output 

filtering or human oversight, circuit breakers provide emergency stops for situations where con

tinued model operation poses immediate risk. These systems must balance sensitivity (detecting 

genuine threats) with robustness (avoiding false alarms that disrupt legitimate operation). The 

design challenge involves creating detection systems that can identify goal misgeneralization rapidly 

enough to prevent harm while maintaining low false positive rates that would render the system 

unusable (Hubinger et al., 2024, Sleeper Agents: Training Deceptive LLMs that Persist Through 

Safety Training).
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Learning theory attempts to predict which learned algorithms will generalize beyond 

training data . The central aim of classical learning theory is to bound various kinds of error: 

in particular, the approximation error, generalization error, and optimization error. One intuition 

driving decades of machine learning research is that simpler models tend to generalize better than 

complex ones. The Occam’s razor principle of ML suggests that when multiple algorithms fit your 

training data equally well, you should prefer the simpler one because it’s more likely to work on new, 

unseen data. Classical learning theory used parameter count as a proxy for algorithmic complexity. 

Fewer parameters meant simpler algorithms, which meant better generalization. This framework 

provided tools to predict not just which models would generalize, but how much data you’d need 

to learn reliably, how confident you should be in your predictions, and when you should prefer one 

model over another. However this assumption breaks down with overparametrized neural networks.

Figure 38: From data to model behaviour: Structure in data determines internal structure in models and 

thus generalisation. Current approaches to alignment work by shaping the training distribution (left), 

which only indirectly determines model structure (right) through the effects on shaping the optimisation 

process (middle left & right). To mitigate the limitations of this indirect approach, alignment requires a 

better understanding of these intermediate links (,Lehalleur et al., 2025,)

Gradient descent navigates loss landscapes in ways that closely approximate Bayesian 

inference. This means that the algorithms we discover through training largely reflect which 

algorithms were already probable under random parameter sampling (Mingard et al., 2020, Is 

SGD a Bayesian Sampler? Well, Almost). If SGD mostly finds algorithms that were already likely 

to emerge from random chance, then the bias toward misaligned goals exists before training even 

begins. The problem isn’t that SGD introduces bad incentives during optimization - it’s that the 

space of possible algorithms is fundamentally skewed toward simple, proxy-based solutions over 

complex, genuinely aligned ones. This might mean we can’t fix goal misgeneralization by changing 

how we train models; we need to change which algorithms are easy to represent in the first place.

Neural networks belong to a class of models where multiple parameter settings can 

implement identical algorithms. Our discussion in the Learning Dynamics section talked about 

how each parameter configuration corresponds to a specific learned algorithm. But in neural 

networks, this relationship is not one-to-one. We can permute hidden units without changing the 

network’s behavior. We can scale weights in one layer and compensate by scaling weights in the 

next layer. We can have completely different parameter configurations that implement identical 

decision-making processes.

Classical learning theory assumes each parameter setting corresponds to a unique algorithm. In 

linear regression, every different set of weights produces a different line, and every line represents 

a unique prediction algorithm. This one-to-one mapping allows classical theory to use parameter 

https://arxiv.org/abs/2502.05475
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count as a complexity measure and apply standard mathematical approximations to predict learning 

outcomes.

These symmetries create a fundamental breakdown in how we measure algorithmic 

complexity. What looks like one algorithm in behaviorally—like “navigate to the coin”—might cor

respond to millions of different parameter configurations, i.e. millions of different types of learned 

algorithms can implement the exact same “navigate to the coin” behavior. Usually, the approach to 

measure the complexity of the learned algorithm is just by counting parameters. This fails because 

thousands of parameters might collaborate to implement a single computational pattern, while other 

parameters might be completely redundant. This breakdown is called “singularity” in mathematical 

terms, referring to degeneracies in the parameter-to-function mapping. The word “singular” means 

the same thing as in “singular matrix”—something fundamental about the mathematical structure 

is degenerate. In neural networks, regions of parameter space implementing the same algorithm 

form complex geometric structures with singularities where standard mathematical tools fail (Murfet 

et al., 2020, Deep Learning is Singular, and That’s Good).

We can permute hidden units without changing the network’s function. We can scale weights 

in one layer and compensate by scaling weights in the next layer. We can even have completely 

different parameter configurations that implement identical decision-making algorithms. A network 

that learns “collect coins” might have millions of different parameter configurations that all imple

ment precisely the same coin-collection algorithm.

Measuring algorithmic complexity creates a new layer to investigate beyond behavioral 

and algorithmic equivalence. Throughout our chapter, we’ve focused on distinguishing between 

behaviorally equivalent but algorithmically different solutions—like “move right” versus “collect 

coins” in CoinRun. Both produce identical training behavior but represent different internal 

reasoning processes. Now we encounter a third layer: algorithmically identical solutions that differ 

only in their specific parameter values. Why does this parametric variation matter if the algorithms 

are identical? Because parameter space geometry determines what SGD discovers during training. 

Even when two parameter configurations implement the same algorithm, they occupy different 

regions of the loss landscape. Some algorithmic solutions might be implementable through millions 

of parameter configurations (creating wide basins in parameter space), while others require precise 

parameter coordination (creating narrow regions). SGD is more likely to discover algorithms that 

correspond to larger regions of parameter space.

Classical learning theory’s tools fail completely when applied to these “singular” models. 

The mathematical techniques that work for linear regression—counting parameters, using standard 

approximations, making clean theoretical predictions—all assume each parameter contributes inde

pendently to algorithmic complexity. In neural networks, parameters interact in complex ways where 

massive numbers of parameters might collaborate to implement simple computational patterns, 

while other parameters might be completely redundant. This breakdown is called “singularity” in 

mathematical terms. The parameter-to-function mapping develops degeneracies and redundancies 

that violate the assumptions underlying classical statistical tools. Standard approximations like the 

Laplace approximation become invalid. Parameter counting becomes meaningless as a complexity 

measure. The neat relationship between parameter count and generalization completely disappears 

(Murfet et al., 2020, Deep Learning is Singular, and That’s Good).
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Free energy minimization for machine learning

OPTIONAL NOTE

Sumio Watanabe’s Free Energy Formula makes this intuitive tradeoff mathematically precise:

𝐹𝑛 ≈ 𝑛𝐿𝑛(𝑤) + 𝜆 log 𝑛

The first term rewards accuracy: ,𝑛𝐿𝑛(𝑤
), measures how well the algorithm fits the ,training data,. Algorithms 

with lower loss get lower free energy, making them more probable.The second term penalizes complexity: ,

𝜆 log 𝑛, measures the algorithmic complexity penalty. Here ,𝜆, is the Real Log Canonical Threshold - the 

number of “effective parameters” needed to specify this particular algorithm within the ,neural network, 

architecture. Algorithms requiring more effective parameters get higher free energy, making them less 

probable.The balance between accuracy and complexity changes as training progresses. Early in training 

(small ,𝑛,), the complexity penalty dominates, so simple algorithms are preferred even if they have higher 

loss. Later in training, the accuracy term dominates, so complex but accurate algorithms become preferred. 

This creates “phase transitions” where the preferred algorithmic solution suddenly switches.

Empirical Evidence: Opposing Staircases. Researchers tracking both loss and estimated com

plexity during training observe “opposing staircases” - each sudden drop in loss is accompanied 

by a jump in algorithmic complexity. This validates SLT’s prediction that learning proceeds through 

discrete phase transitions from simple, high-loss solutions to complex, low-loss solutions rather than 

gradual refinement of a single algorithm.

This explains why simple proxy goals are systematically more likely to emerge during 

training. Algorithms like “always move right” require very few effective parameters - most network 

weights can vary freely without changing this basic behavior pattern. Complex algorithms like “rec

ognize objects, plan paths, navigate obstacles” require many effective parameters working together 

in precise coordination. The Free Energy Formula shows that simpler algorithms have systematically 

higher probability of being discovered during finite training (Watanabe, 2009, Algebraic Geometry 

and Statistical Learning Theory).

Internal model selection describes how neural networks choose between competing solutions 

during training. Rather than gradually refining a single algorithm, networks undergo discrete transi

tions between completely different algorithmic approaches. Each transition represents abandoning 

one algorithmic solution in favor of another that provides a better accuracy-complexity tradeoff given 

the current amount of training data .

Path dependence emerges because the sequence of simple solutions constrains which complex 

solutions become accessible later. Two networks might both start with simple approximations and 

eventually transition to complex algorithms, but which complex algorithm becomes accessible 

depends entirely on the path taken through intermediate simple solutions. Small initialization 

differences can determine which sequence gets traversed, leading to completely different final 

algorithms.

Goal misgeneralization becomes mathematically inevitable when viewed through SLT 

rather than merely possible. The internal model selection mechanism shows that during finite 

training, algorithms with lower effective complexity will be systematically preferred over those with 

higher complexity, even when complex algorithms better capture intended goals. This transforms 
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our understanding from “goal misgeneralization sometimes happens” to “goal misgeneralization is 

the default unless actively prevented.”

Loss landscape singularities create systematic biases toward certain types of goals based 

on their algorithmic simplicity. The geometric structures where multiple parameter configurations 

implement identical algorithms determine which goals are easy versus hard to discover. Goals 

implementable with fewer effective parameters occupy larger regions of parameter space, making 

them more likely to be found. This provides mathematical foundations for our counting arguments 

- the “counting” reflects real geometric volumes.

Goal crystallization refers to the phase transitions where networks abandon simple goal 

approximations for more complex ones. During training, systems don’t gradually refine their 

goals - they undergo sudden transitions where one goal structure gets replaced by another. Early 

transitions typically involve simple approximations (like “move right” instead of “collect coins”). 

Later transitions may lead to more complex goals, but which complex goals become accessible 

depends on the path through earlier simple approximations.

The complexity of human values creates systematic vulnerabilities. Implementing genuine 

alignment requires learning context-dependent rules, handling edge cases, and making subtle moral 

distinctions - all requiring high algorithmic complexity. Simple heuristics producing aligned-looking 

behavior while missing deeper intent will systematically have lower complexity, making them more 

probable during finite training regimes.

Phase transitions provide early warning signals for goal misgeneralization. The Local 

Learning Coefficient can be estimated during training to track complexity changes. Sudden jumps 

often coincide with goal crystallization - moments where networks abandon one goal structure for 

another. Monitoring these transitions could provide advance warning when systems shift toward 

potentially misaligned goals (Hoogland et al., 2024, Loss Landscape Degeneracy and Stagewise 

Development).

Developmental interpretability emerges naturally as a method for understanding goal 

formation. Rather than reverse-engineering completed models, we can study the sequence of 

phase transitions through which goals crystallize. Each transition reveals why particular goals were 

selected over alternatives, providing insights crucial for detection and mitigation. We will talk about 

this more in our chapter on interpretability.

SLT focuses on parameter space geometry while abstracting away how parameters map to behaviors. 

Understanding goal misgeneralization requires connecting geometric complexity to actual algorith

mic behavior, but SLT provides only partial tools for this connection. Two models with identical 

geometric properties could learn different goals depending on their parameter-function mappings 

(Skalse, 2023, My Criticism of Singular Learning Theory).
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