CHAPTER 6

Specification Gaming

Markov Grey
French Center for Al Safety (CeSIA)

Charbel-Raphaél Segerie
French Center for Al Safety (CeSIA)



Chapter 6: Specification Gaming 2

Contents
1. INtrOdUCHON « ..o 3
2. Reinforcement Learning ... .........iuiimini i 4
2. T P Lo 4
2.2 €0 OO . it 4
2.3 POliCIiES ..o 5
2.4 ReWard ... 6
3. OPHMIZAtON ..o 8
3.1 Goodhart's Law . ... 8
4. Specification Gaming ... .......ouiuiii 10
4.1 Reward Design .. ..ot 10
4.2 Reward Shaping .. ... ..ottt 12
4.3 Reward Hacking . ... ..o 14
4.4 Reward Tampering . .. ..ovint it e e e e 16
5. Learning from imifation .. ... ... .. . 18
5.1 Imitation Learning (IL) . ... ... 18
5.2 Behavioral Cloning (BC) ...... ..ot 19
5.3 Procedural Cloning (PC) ... .ot 19
5.4 Inverse Reinforcement Learning (IRL) ..........c.ooiuiiiiii e 20
5.5 Cooperative Inverse Reinforcement Learning (CIRL) .................coiiiini.... 21
5.6 The Goal Inference Problem ... ... ... .. ... . . . . 22
6. Learning from feedback ... ... . 24
6.1 Reward Modeling . .......oo i 24
6.2 Reinforcement Learning from Human Feedback (RLHF) ............................. 26
6.3 Pretfraining with Human Feedback (PHF) ....... ... ... . ... .. ... . . . ... 31
6.4 Reinforcement Learning from Al Feedback (RLAIF) ................................. 31
6.5 LimitatioNns . ... o e 33

Acknowledgements . ... ... .. 38



Chapter 6: Specification Gaming 3

1. Introduction

Reinforcement Learning : The chapter starts with a reminder of some reinforcement learning
concepts. This includes a quick dive into the concept of rewards and reward functions. This section
lays the groundwork for explaining why reward design is extremely important.

Optimization : This section briefly introduces the concept of Goodhart's Law. It provides some
motivation behind understanding why rewards are difficult to specify in a way such that they do not
collapse in the face of immense optimization pressure.

Reward misspecification : With a solid grasp of the notion of rewards and optimization the readers
are infroduced to one of the core challenges of alignment - reward misspecification. This is also
known as the Outer Alignment problem. The section begins by discussing the necessity of good
reward design in addition to algorithm design. This is followed by concrete examples of reward
specification failures such as reward hacking and reward tampering.

Learning by Imitation : This section focuses on some proposed solutions to reward misspecifica-
tion that rely on learning reward functions through imitating human behavior. It examines proposals
such as imitation learning (IL), behavioral cloning (BC), and inverse reinforcement learning (IRL).
Each section also contfains an examination of possible issues and limitations of these approaches
as they pertain to resolving reward hacking.

Learning by Feedback : The final section investigates proposals aiming to rectify reward misspec-
ification by providing feedback to the machine learning models. The section also provides a
comprehensive insight into how current large language models (LLMs) are trained. The discussion
covers reward modeling, reinforcement learning from human feedback (RLHF), reinforcement
learning from artificial intelligence feedback (RLAIF), and the limitations of these approaches.



Chapter 6: Specification Gaming 4

2. Reinforcement Learning

I\ Warning

This is meant as a recap. If you are already familiar with the basics you can skip directly to the
next section.

The section provides a succinct reminder of several concepts in reinforcement learning (RL). It also
disambiguates various often conflated terms such as rewards, values and utilities. The section ends
with a discussion around distinguishing the concept of objectives that a reinforcement learning
system might pursue from what it is being rewarded for.

2.1 Primer

REINFORCEMENT LEARNING (RL)

Reinforcement Learning (RL) focuses on developing agents that can learn from interactive
experiences. RL is based on the concept of an agent learning through interaction with an
environment and altering its behavior based on the feedback it receives through rewards after
each action.

\ J

Some examples of real-world applications of RL include:

RL is different from supervised learning as it begins with a high-level description of “what” to do
but allows the agent to experiment and learn from experience the best “how”. In RL, the agent
learns through interaction with an environment and receives feedback in the form of rewards or
punishments based on its actions. RL is focused on learning a set of rules that recommend the
best action to take in a given state fo maximize long-term rewards. In contrast, supervised learning
typically involves learning from explicitly provided labels or correct answers for each input.

2.2 Core Loop

The overall functioning of RL is relatively straightforward. The two main components are the agent
itself, and the environment within which the agent lives and operates. At each time step :

A history is the sequence of past observations, actions and rewards that have been taken up until
timet: h, = (ay,0q,7q, ..., Gy, 04, 7;) . The state of the world is generally some function of the history:
s, = f(h;) . The World State is the full true state of the world used to determine how the world
generates the next observation and reward. The agent might either get the entire world state as an
observation o, , or some partial subset.

The world goes from one state s, to the next s, ; either based on natural environmental dynamics,
or the agent's actions. State transitions can be both deterministic or stochastic.

This loop continues until a terminal condition is reached or can run indefinitely. Following is a
diagram that succinctly captures the RL process:



Chapter 6: Specification Gaming 5

World

Observation o,

Action a
Reward r, t

Agent

Figure 1: (,Brunskill, 2022,)

2.3 Policies

REINFORCEMENT LEARNING POLICY

A policy helps the agent determine what action to take once it has received an observation. It is
a function mapping from states to actions specifying what action to take in each state. Policies
can be both deterministic or stochastic.

\

The goal of RL is to learn a policy (often denoted by 7 ) that recommends the best action to take at
any given moment in order to maximize total cumulative reward over time. The policy defines the
mapping from states to actions and guides the agent’s decision-making process.

m:S—> A

A policy can be either deterministic or stochastic. A deterministic policy directly maps each state
s, to a specific action a, and is usually denoted by p . In contrast, a stochastic policy assigns a
probability distribution over actions for each state. Stochastic policies usually denoted by 7 .

Deterministic policy: a, = u(s,)
Stochastic policy: 7(als) = P(a, = als, = s)

In Deep RL policies are function maps that are learned during the training process. They depend on
the set of learned parameters of a neural network (e.g. the weights and biases). These parameters
are often denoted with subscripts on the policy equations using either 6 or ¢ . So the deterministic
policy over the parameters of a neural network is written a, = pg,,) , and the stochastic equivalent
IS a, ~ Ty | 4,

An optimal policy maximizes the expected cumulative reward over time. The agent learns from
experience and adjusts its policy based on the feedback it receives from the environment in the
form of rewards or punishments.


https://web.stanford.edu/class/archive/cs/cs234/cs234.1224/

Chapter 6: Specification Gaming 6

In order to determine whether an action is better than another, the actions (or the state-action pairs)
need to be evaluated somehow. There are two different ways to look at which action to take: the
immediate rewards (determined by reward function) and the long term cumulative rewards (deter-
mined by the action-value function). Both of these greatly influence the types of policies learned by
the agent, and therefore also the actions that the agent takes. The following section explores and
clarifies the concept of rewards in greater depth.

2.4 Reward

REWARD

Reward refers to any signal or feedback mechanism used to guide the learning process and
optimize the behavior of the model.

The reward signal from the environment is a number that tells the agent how good or bad the current
world state is. It is a way to provide an evaluation or measure of performance for the model's outputs
or actions. The reward can be defined based on a specific task or objective, such as maximizing
a score in a game or achieving a desired outcome in a real-world scenario. The training process
for RL involves optimizing the model’s parameters to maximize the expected reward. The model
learns to generate actions or outputs that are more likely to receive higher rewards, leading to
improved performance over time. Where does the reward come from? It is generated through a
reward function.

REWARD FUNCTION

A reward function defines the goal or objective in a reinforcement learning problem. It maps
perceived states or state-action pairs of the environment to a single number.

R:(SxA)—R;r, = R(s,a;)

\

The reward function provides immediate feedback to the agent, indicating the goodness or badness
of a particular state or action. It is a mathematical function that maps the state-action pairs of an
agent’s environment to a scalar value, representing the desirability of being in that state and taking
that action. It provides a measure of immediate feedback to the agent, indicating how well it is
performing at each step.

Reward Functions vs. Value Functions

The reward indicates the immediate desirability of states or actions, while a value function represents
the long-term desirability of states, taking into account future rewards and states. The value is the
expected return if you start in a state or state-action pair, and then act according to a particular
policy forever after.

There are many different ways of choosing value functions. They can also be discounted over time,
i.e. future rewards are worth less by some factor .



Chapter 6: Specification Gaming 7

Following is one simple formulation is the discounted sum of future rewards given some policy. The
cumulative discounted rewards are given by:

o
R=r, 491 + V"o + .. = nytrt
=0

And the value of acting according to this policy is given by:

VW(StZS) = ETK'(R | s4=s)

Reward Functions vs. Utility Functions

It is also worth distinguishing the concept of utility from reward and value. A reward function is
typically used in the context of RL to guide the agent’s learning process and behavior. In contrast,
a utility function is more general and captures the agent's subjective preferences or satisfaction,
allowing for comparisons and trade-offs between different world states. Utility functions are a
concept that is used more in the field of decision theory and agent foundations work.



Chapter 6: Specification Gaming 8

3. Optimization

Optimization is important to understand for Al safety concerns because it plays a central role in ML .
Al systems, particularly those based on deep learning , are trained using optimization algorithms
to learn patterns and associations from data. These algorithms update the model’s parameters to
minimize a loss function , maximizing its performance on the given task.

Optimization amplifies certain behaviors or outcomes, even if they were initially unlikely. For
example, an optimizer can search through a space of possible outputs and take extreme actions
that have a high score according to the objective function , potentially leading to unintended and
undesirable behavior. These include reward misspecification failures. A better recognition of the
power of optimization to amplify certain outcomes might help in designing systems and algorithms
that truly align with human values and objectives even under pressure of optimization. This involves
ensuring that the optimization process is aligned with the intended goals and values of the system'’s
designers. It also requires considering the potential failure modes and unintended consequences
that can arise from optimization processes.

Risks from optimization are everywhere in Al Safety. It is only touched on briefly in this chapter, but
will be discussed in further detail in the chapters on goal misgeneralization and agent foundations.

Optimization power plays a crucial role in reward hacking. Reward hacking occurs when RL agents
exploit the difference between a true reward and a proxy reward. The increase in optimization
power can lead to a higher likelihood of reward hacking behavior. In some cases, there are phase
transitions where a moderate increase in optimization power results in a drastic increase in reward
hacking.

3.1 Goodhart’'s Low

GOODHART’'S LAW

When a measure becomes a target, it ceases to be a good measure.

This notion initially stems from the work of Charles Goodhart in economic theory. However, it has
emerged as one of the primary challenges in many different fields including Al alignment today.

To illustrate this concept, the following is a story of a Soviet nail factory. The factory received
instructions to produce as many nails as possible, with rewards for high output and penalties for
low output. Within a few years, the factory had significantly increased its nail production—tiny nails
that were essentially thumbtacks and proved impractical for their intended purpose. Consequently,
the planners shifted the incentives: they decided to reward the factory based on the total weight of
the nails produced. Within a few years, the factory began producing large, heavy nails—essentially
lumps of steel—that were equally ineffective for nailing things.



Chapter 6: Specification Gaming 9

Goal: Manufacture usable nails

Z’roxy Number of nails We?glat of nails made

easure

Then you .

miglﬁt set 1000's of t“mf nails 4 Few s-iamt L\eaVLf nails
\::"“* P

Figure 2: Graphic image showcasing the difficulty of specification while avoiding goodhart’s law.
(,Epicural, 2021,)

A measure is not something that is optimized, whereas a target is something that is optimized.
When we specify a target for optimization, it is reasonable to expect it to be correlated with what
we want. Initially the measure might lead to the kind of actions that are truly desired. However, once
the measure itself becomes the target, optimizing that target then starts diverging away from our
desired stafes.

In the context of Al and reward systems, Goodhart's Law means that when a reward becomes the
objective for an Al agent, the Al agent will do everything it can to maximize the reward function,
rather than the original intention. This can lead to unintended consequences and manipulation of
the reward system, as it can often be easier to “cheat” rather than to achieve the intended goals
This is one of the core underlying reasons for reward hacking failures that we will see in subsequent
sections.

Reward hacking can be seen as a manifestation of Goodhart's Law in the context of Al systems. When
designing reward functions, it is challenging to precisely articulate the desired behavior, and agents
may find ways to exploit loopholes or manipulate the reward system to achieve high rewards without
actually fulfilling the intended objectives. For example, a cleaning robot may create its own trash to
put in the trash can to collect rewards, rather than actually cleaning the environment. Understanding
Goodhart's Law is crucial for addressing reward hacking and designing robust reward systems
that align with the intended goals of Al agents. It highlights the need for careful consideration of
the measures and incentives used in Al systems to avoid unintended consequences and perverse
incentives. The next section dives deeper into specific instances of reward misspecification and
how Als can find ways to achieve the literal specification of the objective and obtain high reward
while not fulfilling the task in spirit.


https://epicural.com/2021/04/27/goodharts-law/

Chapter 6: Specification Gaming 10

L. Specification Gaming

REWARD MISSPECIFICATION

Reward misspecification, also termed the Outer alignment problem, refers to the issue of
providing an Al with the accurate reward to optimize for.

The fundamental issue is simple to comprehend: does the specified loss function align with the in-
tended objective of its designers? However, implementing this in practical scenarios is exceedingly
challenging. To express the complete “intention” behind a human request equates to conveying all
human values, the implicit cultural context, etc., which remain poorly understood themselves.

Furthermore, as most models are designed as goal optimizers, they are all vulnerable to Goodhart's
Law. This vulnerability implies that unforeseen negative consequences may arise due to excessive
optimization pressure on a goal that appears well-specified to humans, but deviates from true
objectives in subtle ways.

The overall problem can be broken up into distinct issues which will be explained in detail in
individual sub-sections below. Here is a quick overview:

Before delving into specific types of reward misspecification failures, the following section further
explains the emphasis on reward design in conjunction with algorithm design. This section also
elucidates the notorious difficulty of designing effective rewards.

4.1 Reward Design

REWARD DESIGN

Reward design refers to the process of specifying the reward function in reinforcement learning
(RL).

Reward design is a broader term than reward shaping that encompasses the entire process of
designing and shaping reward functions to guide the behavior of Al systems. It involves not only
reward shaping but also the overall process of defining objectives, specifying preferences, and
creating reward functions that align with human values and desired outcomes. Reward design is
a term that is often used interchangeably with reward engineering ( Christiano, 2019 ). They both
refer to the same thing.

RL algorithm design and RL reward design are two separate facets of reinforcement learning. RL
algorithm design is about the development and implementation of learning algorithms that allow
an agent to learn and refine its behavior based on rewards and environmental interactions. This
process includes designing the mechanisms and procedures by which the agent learns from its
experiences, updates its policies, and makes decisions to maximize cumulative rewards.

Conversely, RL reward design concentrates on the specification and design of the reward function
guiding the RL agent's learning process. Reward design warrants carefully engineering the reward


https://www.alignmentforum.org/posts/4nZRzoGTqg8xy5rr8/the-reward-engineering-problem

Chapter 6: Specification Gaming 1

function to align with the desired behavior and objectives, while accounting for potential pitfalls
like reward hacking or reward tampering. The reward function is a pivotal element because it molds
the behavior of the RL agent and determines which actions are deemed desirable or undesirable.

[Undesirabie novel solutions Desirable novel sofut?ons.j

Low Spec?'Fication correctness @%

Figure 3: Specification gaming: the flip side of Al ingenuity (,Krakovna et al., 2020,)

Designing a reward function often presents a formidable challenge that necessitates considerable
expertise and experience. To demonstrate the complexity of this task consider how one might
manually design a reward function to make an agent perform a backflip, as depicted in the following
image:

Figure 4: Deep reinforcement learning from human preferences (,Christiano et al., 2017,)


https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://arxiv.org/abs/1706.03741

Chapter 6: Specification Gaming 12

While RL algorithm design focuses on the learning and decision-making mechanisms of the agent,
RL reward design focuses on defining the objective and shaping the agent's behavior through the
reward function. Both aspects are crucial in the development of effective and aligned RL systems.
A well-designed RL algorithm can efficiently learn from rewards, while a carefully designed reward
function can guide the agent towards desired behavior and avoid unintended consequences. The
following diagram displays the three key elements in RL agent design—algorithm design, reward
design, and the prevention of tampering with the reward signal:

Ahgnea{ RL Agent Design

Avoid Reward

AISOﬁﬂ«M Design Reward Design Tampering

\

Agents that achieve the intended outcomes

Figure 5: Specification gaming: the flip side of Al ingenuity (,Krakovna et al., 2020,)

The process of reward design receives minimal attention in introductory RL texts, despite its
critical role in defining the problem to be resolved. As mentioned in this section’s introduction,
solving the reward misspecification problem would necessitate finding evaluation metrics resistant
to Goodhart's law-induced failures. This includes failures stemming from over-optimization of either
a misdirected or a proxy objective (reward hacking), or by the agent directly interfering with the
reward signal (reward tampering). These concepts are further explored in the ensuing sections.

4.2 Reward Shaping

REWARD SHAPING

Reward shaping is a technique used in RL which introduces small intermediate rewards to
supplement the environmental reward. This seeks to mitigate the problem of sparse reward
signals and to encourage exploration and faster learning.

\

In order to succeed at a reinforcement learning problem, an Al needs to do two things:


https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity

Chapter 6: Specification Gaming 13

Model-free RL methods explore by taking actions randomly. If, by chance, the random actions lead to
a reward, they are reinforced, and the agent becomes more likely to take these beneficial actions in
the future. This works well if rewards are dense enough for random actions to lead to a reward with
reasonable probability. However, many of the more complicated games require long sequences of
very specific actions to experience any reward, and such sequences are extremely unlikely to occur
randomly.

A classic example of this problem was observed in the video game Montezuma'’s revenge where
the agent's objective was to find a key, but there were many intermediate steps required to find
it. In order to solve such long term planning problems researchers have tried adding extra terms
or components to the reward function to encourage desired behavior or discourage undesired
behavior.

u_ﬂ

Figure 6: Learning Montezuma’s Revenge from a single demonstration (,OpenAl, 2018,)

The goal of reward shaping is to make the learning process more efficient by providing informative
rewards that guide the agent towards the desired outcomes. Reward shaping involves providing
additional rewards to the agent for making progress towards the desired goal. By shaping the
rewards, the agent receives more frequent and meaningful feedback, which can help it learn
more efficiently. Reward shaping can be particularly useful in scenarios where the original reward


https://openai.com/research/learning-montezumas-revenge-from-a-single-demonstration

Chapter 6: Specification Gaming 14

function is sparse, meaning that the agent receives little or no feedback until it reaches the final goal.
However, it is important to design reward shaping carefully to avoid unintended consequences.

Reward shaping algorithms often assume hand-crafted and domain-specific shaping functions,
constructed by subject matter experts, which runs contrary to the aim of autonomous learning.
Moreover, poor choices of shaping rewards can worsen the agent's performance.

Poorly designed reward shaping can lead to the agent optimizing for the shaped rewards rather than
the true rewards, resulting in suboptimal behavior. Examples of this are provided in the subsequent
sections on reward hacking.

4.3 Reward Hacking

REWARD HACKING

Reward hacking occurs when an Al agent finds ways to exploit loopholes or shortcuts in the
environment to maximize its reward without actually achieving the intended goal.

Specification gaming is the general framing for the problem when an Al system finds a way to
achieve the objective in an unintended way. Specification gaming can happen in many kinds of ML
models. Reward hacking is a specific occurrence of a specification gaming failure in RL systems
that function on reward-based mechanisms.

Reward hacking and reward misspecification are related concepts but have distinct meanings.
Reward misspecification refers to the situation where the specified reward function does not
accurately capture the true objective or desired behavior.

Rewards hacking does not always require reward misspecification. It is not necessarily true that a
perfectly specified reward (which completely and accurately captures the desired behavior of the
system) is impossible to hack. There can also be buggy or corrupted implementations which will
have unintended behaviors. The point of a reward function is to boil a complicated system down to
a single value. This will pretty much always involve simplifications etc., which will then be slightly
different from what you're describing. The map is not the territory.

Reward hacking can manifest in a myriad of ways. For instance, in the context of game-playing
agents, it might involve exploiting software glitches or bugs to directly manipulate the score or gain
high rewards through unintended means.

As a concrete example, one agent in the Coast Runners game was trained with the objective of
winning the race. The game uses a score mechanism, so in order to progress to the next level the
reward designers used reward shaping to reward the system when it scored points. These were
given when a boat gets items (such as the green blocks in the animation below) or accomplishes
other actions that presumably would help it win the race. Despite being given intermediate rewards,
the overall intended goal was to finish the race as quickly as possible. The developers thought the
best way to get a high score was to win the race but it was not the case. The agent discovered that
continuously rotating a ship in a circle to accumulate points indefinitely optimized its reward, even
though it did not help it win the race.



Chapter 6: Specification Gaming 15

13500~/ g o> @&

Agent swerves off course Collision regenerates targets Agent gains bonus points Cycle repeats; score increases

Figure 8: An Al playing CoastRunners 7 learned to crash and regenerate targets repeatedly rather
than win the race fo get a higher score, exhibiting proxy gaming. (,Hendrycks, 2024,)

In cases where the reward function misaligns with the desired objective, reward hacking can
emerge. This can lead the agent to optimize a proxy reward, deviating from the true underlying
goal, thereby yielding behavior contrary to the designers’ intentions. As an example of something
that might happen in a real-world scenario consider a cleaning robot: if the reward function focuses
on reducing mess, the robot might artificially create a mess to clean up, thereby collecting rewards,
instead of effectively cleaning the environment.

Reward hacking presents significant challenges to Al safety due to the potential for unintended and
potentially harmful behavior. As a result, combating reward hacking remains an active research area
in Al safety and alignment.


https://openai.com/index/faulty-reward-functions/
https://www.aisafetybook.com/textbook/robustness

Chapter 6: Specification Gaming 16

4.4 Reward Tampering

REWARD TAMPERING

Reward tampering refers to instances where an Al agent inappropriately influences or manip-
ulates the reward process itself.

The problem of getting some intended task done can be split into:

Reward tampering involves the agent interfering with various parts of this reward process. An agent
might distort the feedback received from the reward model, altering the information used to update
its behavior. It could also manipulate the reward model’s implementation, altering the code or
hardware to change reward computations. In some cases, agents engaging in reward tampering
may even directly modify the reward values before processing in the machine register. Depending
on what exactly is being tampered with we get various degrees of reward tampering. These can be
distinguished from the image below.

S< Reward RL
~ o Sensor Function ,4|9c>ritl«m

@§ > fix ———=TC

H%Lﬂ

Reward Ho\:k?ng Reward function Reward function
(Spe.ci'FicatReam gam‘mg) Input Tampering tampering

W?relﬁ&ading

Figure 9: Clarifying wireheading terminology (,Gao, 2022,)

Reward function input tampering interferes only with the inputs to the reward function. E.g. inter-
fering with the sensors.

Reward function tampering involves the agent changing the reward function itself.

Wireheading refers to the behavior of a system that manipulates or corrupts its own internal
structure by tampering directly with the RL algorithm itself, e.g. by changing the register values.

Reward tampering is concerning because it is hypothesized that tampering with the reward process
will often arise as an instrumental goal ( Bostrom, 2014 ; Omohundro, 2008 ). This can lead to
weakening or breaking the relationship between the observed reward and the intended task. This
is an ongoing research direction.

A hypothesized existing example of reward tampering can be seen in recommendation-based
algorithms used in social media. These algorithms influence their users’ emotional state to generate


https://www.alignmentforum.org/posts/REesy8nqvknFFKywm/clarifying-wireheading-terminology
https://www.goodreads.com/book/show/20527133-superintelligence
https://dl.acm.org/doi/10.5555/1566174.1566226

Chapter 6: Specification Gaming 17

more ‘likes’. The intended task was to serve useful or engaging content, but this is being achieved
by tampering with human emotional perceptions, and thereby changing what would be considered
useful. Assuming the capabilities of systems continue to increase through either computational or
algorithmic advances, it is plausible to expect reward tampering problems to become increasingly
common. Therefore, reward tampering is a potential concern that requires much more research
and empirical verification.



Chapter 6: Specification Gaming 18

5. Learning from imitation

The preceding sections have underscored the significance of reward misspecification for the
alignment of future artificial intelligence. The next few sections will explore various attempts and
proposals formulated to tackle this issue, commencing with an intuitive approach — learning the
appropriate reward function through human behavior observation and imitation, rather than manual
creation by the designers.

5.1 Imitation Learning (IL)

IMITATION LEARNING

Imitation learning entails the process of learning via the observation of an expert’s actions and
replicating their behavior.

Unlike reinforcement learning (RL), which derives a policy for a system’s actions based on its
interaction outcomes with the environment, imitation learning aspires to learn a policy through the
observation of another agent interacting with the environment. Imitation learning is the general term
for the class of algorithms that learn through imitation.

Al Planning | SL | UL | RL | IL
Optimization X X | X
Learns from experience X | X | X | X
Generalization X X | X | X | X
Delayed Consequences X X | X
Exploration X

Figure 10: A table that distinguishes various ,machine learning, based methods, where SL = ,Super-
vised learning,; UL = ,Unsupervised learning,; RL = Reinforcement Learning; IL = Imitation Learning.
IL reduces RL to SL. IL + RL is a promising area. (,Brunskill, 2022,)

IL can be implemented through behavioral cloning (BC), procedural cloning (PC) , inverse rein-
forcement learning (IRL), cooperative inverse reinforcement learning (CIRL), generative adversarial
imitation learning (GAIL), etc...

One instance of this process’s application is in the training of modern large language models (LLMs).
LLMs, after training as general-purpose text generators, often undergo fine-tuning for instruction
following through imitation learning, using the example of a human expert who follows instructions
provided as text prompts and completions.

In the context of safety and alignment, imitation learning is favored over direct reinforcement to
alleviate specification gaming issues. This problem emerges when the programmers overlook or
fail to anticipate certain edge cases or unusual ways of achieving a task in the specific environment.


https://web.stanford.edu/class/archive/cs/cs234/cs234.1224/

Chapter 6: Specification Gaming 19

The presumption is that demonstrating behavior, compared to RL, would be simpler and safer, as
the model would not only attain the objective but also fulfill it as the expert demonstrator explicitly
infends. However, this is not an infallible solution, and its limitations will be discussed in later
sections.

5.2 Behavioral Cloning (BC)

BEHAVIORAL CLONING

Behavioral cloning involves collecting observations of an expert demonstrator proficient at the
underlying task, and using supervised learning (SL) to guide an agent to ‘imitate’ the demon-
strated behavior.

\ J

Behavioral cloning is one way in which we can implement imitation learning (IL). There are also other
ways such as inverse reinforcement learning (IRL), or cooperative inverse reinforcement Learning
(CIRL). Unlike IRL, the goal behind behavioral cloning as a machine learning ( ML ) method is to
replicate the demonstrator’s behavior as closely as possible, regardless of what the demonstrator’s
goals might be.

Self-driving cars can serve as a simplistic illustration of how behavioral cloning operates. A human
demonstrator (driver) is directed to operate a car, during which data about the environment state
from sensors like lidar and cameras, along with the actions taken by the demonstrator, are collected.
These actions can include wheel movements, gear use, etc. This creates a dataset comprising
(state, action) pairs. Subsequently, supervised learning is used to train a prediction model, which
attempts to predict an action for any future environment state. For instance, the model might output
a specific steering wheel and gear configuration based on the camera feed. When the model
achieves sufficient accuracy, it can be stated that the human driver’s behavior has been ‘cloned’
into a machine via learning. Hence, the term behavioral cloning.

The following points highlight several potential issues that might surface when employing behavioral
cloning:

5.3 Procedural Cloning (PC)

PROCEDURE CLONING

Procedure cloning (PC) extends behavioral cloning (BC) by not just imitating the demonstrators
outputs but also imitating the complete sequence of intermediate computations associated with
an expert’s procedure.

\

In BC, the agent learns to map states directly to actions by discarding the intermediate search out-
puts. On the other hand, the PC approach learns the entire sequence of intermediate computations,
including branches and backtracks, during training. During inference, PC generates a sequence of
intermediate search outcomes that mimic the expert's search procedure before outputting the final
action.



Chapter 6: Specification Gaming 20

The main difference between PC and BC lies in the information they utilize. BC only has access to
expert state-action pairs as demonstrations, while PC also has access to the intermediate computa-
tions that generated those state-action pairs. PC learns to predict the complete series of intermediate
computation outcomes, enabling it to generalize better to test environments with different configu-
rations compared to alternative improvements over BC. PC'’s ability to imitate the expert's search
procedure allows it to capture the underlying reasoning and decision-making process, leading to
improved performance in various tasks. ( Yang et al., 2022 )

A limitation of PC is the computational overhead compared to BC, as PC needs to predict inferme-
diate procedures. Additionally, the choice of how to encode the expert's algorithm into a form
suitable for PC is left to the practitioner, which may require some trial-and-error in designing the
ideal computation sequence.

5.4 Inverse Reinforcement Learning (IRL)

INVERSE REINFORCEMENT LEARNING (IRL)

Inverse reinforcement learning (IRL) represents a form of machine learning wherein an artificial
intelligence observes the behavior of another agent within a particular environment, typically
an expert human, and endeavors to discern the reward function without its explicit definition.

\

IRL is typically employed when a reward function is too intricate to define programmatically, or when
Al agents need to react robustly to sudden environmental changes necessitating a modification in
the reward function for safety. For instance, consider an Al agent learning to execute a backflip.
Humans, dogs, and Boston Dynamics robots can all perform backflips, but the manner in which they
do so varies significantly depending on their physiology, their incentives, and their current location,
all of which can be highly diverse in the real world. An Al agent learning backflips purely through
trial and error across a wide range of body types and locations, without something to observe,
might prove highly inefficient.

IRL, therefore, does not necessarily imply that an Al mimics other agents’ behavior, since Al
researchers may anticipate the Al agent to devise more efficient ways to maximize the discovered
reward function. Nevertheless, IRL does assume that the observed agent behaves transparently
enough for an Al agent to accurately identify their actions, and what success constitutes. This means
that IRL endeavors to discover the reward functions that ‘explain’ the demonstrations. This should
not be conflated with imitation learning where the primary interest is a policy capable of generating
the observed demonstrations.


https://arxiv.org/abs/2205.10816

Chapter 6: Specification Gaming 21

[ Environment [@
o ¢ Y
D (et )—> (i > (B R

L Env‘-ronment]@
v

ra ",
B2 (Reward ) | runforeament [ S (Behevior JFR

c"_e.arnins-

Figure 11: A simple illustration of the flow difference between RL and IRL.

IRL constitutes both a machine learning method, since it can be employed when specifying a reward
function is excessively challenging, and a machine learning problem, as an Al agent may settle on
an inaccurate reward function or utilize unsafe and misaligned methods to achieve it.

One of the limitations to this approach is that IRL algorithms presume that the observed behavior is
optimal, an assumption that arguably proves too robust when dealing with human demonstrations.
Another problem is that the IRL problem is ill-posed as every policy is optimal for the null reward.
For most behavioral observations, multiple fitting reward functions exist. This set of solutions often
includes many degenerate solutions, which assign zero rewards to all states.

5.5 Cooperative Inverse Reinforcement Learning (CIRL)

CIRL (Cooperative Inverse Reinforcement Learning) is an extension of the IRL (Inverse Reinforcement
Learning) framework. IRL is a learning approach that aims to infer the underlying reward function
of an expert by observing their behavior. It assumes that the expert's behavior is optimal and tries
to learn a reward function that explains their actions. CIRL, on the other hand, is an interactive form
of IRL that addresses two major weaknesses of conventional IRL.

First, Instead of simply copying the human reward function CIRL is formulated as a learning process.
It is an interactive reward maximization process, where the human functions as a teacher and
provides feedback (in the form of rewards) on the agent's actions. This allows the human to nudge
the Al agent towards behavioral patterns that align with their preferences. The second weakness of
conventional IRL is that it assumes the human behaves optimally, which limits the teaching behaviors
that can be considered. CIRL addresses this weakness by allowing for a variety of teaching behaviors
and interactions between the human and the Al agent. It enables the Al agent to learn not only what
actions to take but also how and why to take them, by observing and interacting with the human.

CIRL has been studied as a potential approach to Al alignment, particularly in scenarios where deep
learning may not scale to AGIl. However, opinions on the potential effectiveness of CIRL vary, with



Chapter 6: Specification Gaming 22

some researchers expecting it to be helpful if deep learning doesn’t scale to AGI, while others have
a higher probability of deep learning scaling to AGI.

5.6 The Goal Inference Problem

GOAL INFERENCE PROBLEM

The goal inference problem refers to the task of inferring the goals or intentions of an agent
based on their observed behavior or actions.

This final section builds upon the limitations highlighted in previous sections to introduce the Goal
Inference problem, and it's simpler subset - the easy goal inference problem. Imitation learning
based approaches, generally follows these steps:

The merit of this method is that we can immediately start constructing systems that are driven
by observed user behavior. However, as a consequence of this approach, we run into the goal
inference problem. This refers to the task of inferring the goals or intentions of an agent based on
their observed behavior or actions. It involves determining what the agent is trying to achieve or
what their desired outcome is. The goal inference problem is challenging because agents may act
sub-optimally or fail to achieve their goals, making it difficult to accurately infer their true intentions.
Traditional approaches to goal inference often assume that agents act optimally or exhibit simplified
forms of sub-optimality, which may not capture the complexity of real-world planning and decision-
making. Therefore, the goal inference problem requires accounting for the difficulty of planning
itself and the possibility of sub-optimal or failed plans.

However, it also optimistically presumes that we can depict a human as a somewhat rational agent,
which might not always hold. The easy goal inference problem is a simplified version of the goal
inference problem.

EASY GOAL INFERENCE PROBLEM

The easy goal inference problem involves finding a reasonable representation or approximation
of what a human wants, given complete access to the human’s policy or behavior in any
situation.

\

This version of the problem assumes no algorithmic limitations and focuses on extracting the true
values that the human is imperfectly optimizing. However, even this simplified version of the problem
remains challenging, and little progress has been made on the general case. The easy goal inference
problem is related to the goal inference problem because it highlights the difficulty of accurately
inferring human goals or intentions, even in simplified scenarios. While narrow domains with simple
decisions can be solved using existing approaches, more complex tasks such as designing a city
or setting policies require addressing the challenges of modeling human mistakes and sub-optimal
behavior. Therefore, the easy goal inference problem serves as a starting point to understand the
broader goal inference problem and the additional complexities it entails.

Inverse reinforcement learning (IRL) is effective in modeling and imitating human experts. However,
for many significant applications, we desire Al systems that can make decisions surpassing even



Chapter 6: Specification Gaming 23

the experts. In such cases, the accuracy of the model isn't the sole criterion because a perfectly
accurate model would merely lead us to replicate human behavior and not transcend it.

This necessitates an explicit model of errors or bounded rationality, which will guide the Al on how to
improve or be “smarter,” and which aspects of the human policy it should discard. Nonetheless, this
remains an exceedingly challenging problem as humans are not primarily rational with a bit of added
noise. Hence, constructing any model of mistakes is just as complex as building a comprehensive
model of human behavior. A critical question we face is: How do we determine the quality of a
model when accuracy can no longer be our reliable measure? How can we distinguish between
good and bad decisions?



Chapter 6: Specification Gaming 24

6. Learning from feedback

Strong-to-weak

(c) Aligning through model feedback (d) Aligning through environment feedback

Figure 12: lllustration of different ways being pursued of achieving alignment. (,Cao et al., 2024,)

This section discusses yet more attempts to address the reward misspecification problem. At
times, the intended behavior is so intricate that demonstration-based learning becomes untenable.
An alternative approach is to offer feedback to the agent instead of providing either manually
specified reward functions or even expert demonstrations. This section delves into feedback-based
strategies such as Reward Modeling, Reinforcement Learning from Human Feedback (RLHF) and
Reinforcement Learning from Al Feedback (RLAIF), also known as Reinforcement Learning from
Constitutional Al (RLCAI) or simply Constitutional Al.

6.1 Reward Modeling

Reward modeling was developed to apply reinforcement learning (RL) algorithms to real-world
problems where designing a reward function is difficult, in part because humans don’t have a perfect
understanding of every objective. In reward modeling, human assistants evaluate the outcomes of
Al behavior, without needing to know how to perform or demonstrate the task optimally themselves.
This is similar to how you can tell if a dish is cooked well by tasting it even if you do not know
how to cook, and thus your feedback can be used by a chef to learn how to cook better. This
technique separates the RL alignment problem into two separate halves: Understanding intentions,
i.e. learning the ‘What?’, and Acting to achieve the intentions, i.e. learning the ‘How?". This means
that in the modeling agenda, there are two different ML models:


https://arxiv.org/abs/2406.01252

Chapter 6: Specification Gaming 25

Reward model

o
o
o
p. User
[+1]
+
H
=]
=
o)
S,
@h
=
7
<o <
) X
'&o £
&y x©
'?O G
% F
b

Environment

Figure 13: Scalable agent alignment via reward modeling (,DeepMind, 2018,)

Overall, while promising reward modeling can still fall prey to reward misspecification and reward
hacking failures. Obtaining accurate and comprehensive feedback can be challenging, and human
evaluators may have limited knowledge or biases that can impact the quality of the feedback.
Additionally, any reward functions learnt through modeling might also struggle to generalize to new
situations or environments that differ from the training data . These are all discussed further using
concrete examples in later sections.

There are also some variants of reward modeling such as:


https://deepmindsafetyresearch.medium.com/scalable-agent-alignment-via-reward-modeling-bf4ab06dfd84

Chapter 6: Specification Gaming 26

Reward model

o = h
o ,r/ (o] N
® T
3 User | | |
2 ser | - [
= | )
g « W
g - >
S A
[ |
% /'
%
oL
“‘@,L @) O
6{2'
. % o O
-C‘el Q(
¥ Ko
o, e,c’
] "D\

Environment

Figure 14: Scalable agent alignment via reward modeling (,DeepMind, 2018,)

The general reward modeling framework forms the basis for other feedback based techniques such
as RLHF (Reinforcement Learning from Human Feedback) which is discussed in the next section.

6.2 Reinforcement Learning from Human Feedback (RLHF)

Reinforcement Learning from Human Feedback (RLHF) is a method developed by OpenAl. It's a
crucial part of their strategy to create Als that are both safe and aligned with human values. ( OpenAl,
2023 ) A prime example of an Al trained with RLHF is OpenAl’'s ChatGPT.

Earlier in this chapter, the reader was asked to consider the reward design problem for manually
defining a reward function to get an agent to perform a backflip. This section considers the RLHF
solution to this design problem. RLHF addresses this problem as follows: A human is initially shown
two instances of an Al's backflip attempts, then the human selects which one appears more like a
backflip, and finally, the Al is updated accordingly. By repeating this process thousands of times,
we can guide the Al to perform actual backflips.


https://deepmindsafetyresearch.medium.com/scalable-agent-alignment-via-reward-modeling-bf4ab06dfd84
https://openai.com/blog/our-approach-to-ai-safety
https://openai.com/blog/our-approach-to-ai-safety

Chapter 6: Specification Gaming

Figure 15: RLHF learned to backflip using around 900 individual bits of feedback from the human
evaluator.

27



Chapter 6: Specification Gaming 28

Figure 16: Manual reward crafting for this backflip took two hours to write a custom reward function.

While it was successful, it was significantly less elegant than the one trained purely through human
feedback. (,OpenAl, 2017,)

Similar to designing a reward function that efficiently rewards proper backflips, it is hard to specify
precisely what it means to generate safe or helpful text. This served as some of the motivation
behind making RLHF integral to the training of some current Large Language Models (LLMs).

Although training sequences may vary slightly across organizations, most labs adhere to the general
framework of pre-training followed by some form of fine-tuning . Observing the InstructGPT training
process offers insight into a possible path for training LLMs. The steps include:


https://openai.com/index/learning-from-human-preferences/

Step1

Chapter 6: Specification Gaming

Collect demonstration data,
and train a supervised policy.

A promptis

Step 2

Collect comparison data,
and train a reward model.

A prompt and

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

29

. =
sampled from our ERT. G several model ERT - is sampled from .
prompt dataset. landing te a 6 year old outputs are landing to a 6 year old the dataset. about frogs
sampled. |
Y o (=] ) \
A Iabeler Explaan oravity Expiain war. The DOlICy GEE
.. 9
demonstrates the @ generates o
desired output o anoutput. =y
behavior. Some ual;nle went *
{othe meon Alabeler ranks
{ the outputs from Onee upon a time.
This data is used . best to worst. i
to fine-tune GPT-3 .,:?'5&. The reward model -
with supervised p>2 “ calcul;;es a ./..)?_?.\\.
learning. . . reward for N
Z This data is used .RM. the output. e
@@@ to train our ./)?.7“. *
reward model. e The reward is
NcH AN used to update T
0-0-0-0
the policy
using PPO.

Figure 17: Aligning language models to follow instructions (,OpenAl, 2022,)

Reward hacking in feedback methods

While the feedback based mechanisms do make models safer, they do not make them immune to
reward hacking. The effectiveness of an algorithm heavily relies on the human evaluator’s intuition
about what constitutes the correct behavior. If the human lacks a thorough understanding of the
task, they may not provide beneficial feedback. Further, in certain domains, our system might lead
to agents developing policies that deceive the evaluators. For instance, a robot intended to grasp
objects merely positioned its manipulator between the camera and the object, making it seem as if
it was executing the task as shown below.


https://openai.com/research/instruction-following

Chapter 6: Specification Gaming

Figure 18: Deep Reinforcement Learning From Human Preferences (,Christiano et al., 2017,)

30


https://arxiv.org/abs/1706.03741

Chapter 6: Specification Gaming 31

T

Perception Assumption

%2

Reahtl{

Figure 19: A sensor without depth perception can be fooled by Als that only appear to grasp a ball.

6.3 Pretraining with Human Feedback (PHF)

In standard pretraining , the language model attempts to learn parameters such that they maximize
the likelihood of the training data . However, this also includes undesirable content such as
falsehoods, offensive language, and private information. The concept of Pretraining with human
feedback (PHF) utilizes the reward modeling methodology in the pretraining phase. The authors
of the paper found that PHF works much better than the standard practice of only using feedback
(RLHF) after pretraining . ( Christiano et al., 2017 )

In PHF the training data is scored using a reward function, such as a toxic text classifier, to guide the
language model to learn from undesirable content while avoiding imitating it during inference time.

Similar to RLHF, PHF does not completely solve reward hacking, however, it might move the systems
one small step closer. ( Korbak et al., 2023 ) These methods can be further extended by employing
Al assistants to aid humans in providing more effective feedback. Some aspects of this strategy are
introduced in the next section but will be explored in further detail in the chapters on scalable and
adversarial oversight methods.

6.4 Reinforcement Learning from Al Feedback (RLAIF)

REINFORCEMENT LEARNING FROM Al FEEDBACK (RLAIF)

Reinforcement Learning from Al Feedback (RLAIF) is a framework involving the training of an
Al agent to learn from the feedback given by another Al system.



https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/2302.08582

Chapter 6: Specification Gaming

Supervised
Learning (SL) Stage

Revises harmful Al responses through
iterative self-critique and fine-tuning.

1. GENERATE RESPONSES TO
HARMFULNESS PROMPTS

3. FINE-TUNE WITH SL ON THE
FINAL REVISED RESPONSES

2. CRITIQUE AND REVISE RESPONSE

Reinforcement
Learning (RL) Stage

Uses Al evaluations of responses according to constitutional principles to
generate preference data for harmlessness and uses it to train a new
model via Reinforcement Learning from Al Feedback.

4. AI GENERATES DATASET OF

PREFERENCES FOR HARMLESSNESS
5. FINE-TUNE THE ORIGINAL SL. MODEL WITH RL
¥ USING THE NEW PREFERENCE MODEL (RLATF)

4. TRAIN
PREFERENCE MODEL

Which is better according to »\
%
¢

constitutional principles?

Figure 20: (,Anthropic, 2023,)

32

RLAIF also known as RLCAI (Reinforcement Learning on Constitutional Al) or simply Constitutional
Al, was developed by Anthropic. ( Anthropic, 2023 ) A central component of Constitutional Al
is the constitution, a set of human-written principles that the Al is expected to adhere to, such as
“Choose the least threatening or aggressive response”. Anthropic’s Al assistant Claude’s constitution

incorporates principles from the Universal Declaration of Human Rights, Apple’s Terms of Service

Deepmind’s Sparrow Principles, and more. ( Glaese et al, 2022 ) Constitutional Al begins with an

Al trained primarily for helpfulness and subsequently trains it for harmlessness in two stages:

U

Generate prompt, output pairs: The Al continuously critiques and refines its own responses to
harmful prompts. The Al is then trained to generate outputs more similar to these revised responses.
This stage’s primary objective is to facilitate the second stage. An example flow of this process is as

follows:

Anthropic’s experiments indicate that Als trained with Constitutional Reinforcement Learning are

significantly safer (in the sense of less offensive and less likely to give you potentially harmful

information) while maintaining the same level of helpfulness compared to Als trained with RLHF.
While Constitutional Al does share some issues with RLHF concerning robustness, it also promises
better scalability due to its reduced reliance on human supervision. The image below provides a
comparison of Constitutional Al's helpfulness with that of RLHF.


https://www.anthropic.com/index/claudes-constitution
https://www.anthropic.com/index/claudes-constitution
https://arxiv.org/abs/2209.14375

Chapter 6: Specification Gaming

200
150 1
100 A

504

Harmlessness Elo

=50 qPretrained
Base

-100 A

Constitutional RL

With Chain (Pareto Improvement)

of Thought

Standard
RLHF

_~~ Constitutional SL

Helpful-Only

=150 =100

=50 0 50 100 150
Helpfulness Elo

Figure 21: Constitutional Al: Harmlessness from Al Feedback (,Bai et al., 2022,)

6.5 Limitations

Theoretical problems with Reinforcement Learning from Human Feedback (RLHF)

33

The paper “Open Problems and Fundamental Limitations with RLHF” provides a comprehensive

breakdown of challenges in RLHF.

Challenges

s ™~

’ Human Feedback, §3.1

§3.1.1, Misaligned Evaluators ]

§3.1.2, Difficulty of Oversight

§3.1.4, Feedback Type Limitations

[
| )
[§3.l.3. Data Qualilty ]

\ [ ] J

1 r

|ﬂ| Reward Model, §3.2

@f Policy, §3.3

[§3.3.1.RL Difficulties ]

[%3.2.1. Problem Misspecification ]

[§3.2.2. Misgeneralization/Hacking ] |§3_3.2. Policy Misgeneralization ]

[§3.2.3. Evaluation Difficulty ] |§3.3.3. Distributional Challenges ]

[ §3.4, Joint RM/Policy Training Challenges ]

\ J \

Figure 22: An overview of various types of challenges with RLHF. Since RLHF is composed of three
parts: the human feedback, the reward model, and the policy, the arising biases can be categorized

according fo these three sources.

This section outlines some of these challenges, emphasizing the need for advanced techniques and

strategies.
Limits with Human Feedback

Misaligned Evaluators :

Firstly, the annotators might themselves be misaligned, malicious, or

biased distribution of evaluators (i.e. not representative of the distribution of future users in the real
world). Malicious individuals can poison the model during training via backdoor attacks that can
be added to the model if no countermeasures are put in place.


https://arxiv.org/abs/2212.08073

Chapter 6: Specification Gaming 34

Difficulty of Oversight : Humans struggle to evaluate model performance on complex tasks and
can be easily misled by model outputs. Human evaluators can be manipulated to return a positive
reward even if the true value should be negative. For instance, the more convincing a bot seems, the
more reward it may receive even if its answers are false (and this might be a reason why ChatGPT
answers might be so long by default). Techniques to mitigate these issues are discussed in the
“Scalable Oversight” chapters.

Feedback type limitation : Even if the annotators were in perfect capability of expressing their
preferences, the training procedure might not enable them to express the full extent of their desires,
because:

Limits with the Reward Model. Let's assume the feedback process to be frictionless. Perfect
annoftators, perfect evaluations. In that scenario, would the reward model be able to accurately
translate their feedback in order to shape the policy accordingly ? It turns out it is not such an
easy fask.

Limits with the Policy. Let's assume the feedback and the reward model accurately represent
human preferences. The next difficulty is ensuring the policy is correctly optimized.

Those theoretical problems have real consequences:

RLHF has not succeeded in making LLMs robustly helpful and harmless. Despite the contin-
uous advancements in natural language processing and the development of RLHF, LLMs have not
yet achieved robust helpfulness and harmlessness.

Hallucinations remain a significant issue, as illustrated by GPT-4’s tendency to generate nonsensical
or untruthful content ( OpenAl, 2023 ). These hallucinations can lead to overreliance on LLMs,
consequently degrading system performance and failing o meet user expectations in real-world
scenarios ( Ji et al., 2024 ).

Additionally, biases within LLMs persist, often reflecting misaligned opinions between the LLM and
various demographic groups in the United States, as seen with the left-leaning tendencies of some
human feedback-tuned LLMs ( Santurkar et al., 2023 ). These biases can be harmful, producing
discriminatory language and perpetuating negative stereotypes, as demonstrated by GPT-3's anti-
Muslim bias ( Abid et al., 2021).

Moreover, jailbreaking of chatbots poses a significant risk, with websites listing prompts to bypass
safety measures like Chat GPT “DAN" (and other “Jailbreaks”) ( Takemoto, 2024 ). Privacy threats
from application-integrated LLMs are now more severe than ever ( Li et al., 2023 ). For instance, Italy
banned ChatGPT due to privacy considerations under the EU’s General Data Protection Regulation
(GDPR) ( BBC, 2023 ). The ability to find jailbreaks is supported by a recent paper titled “Funda-
mental Limitations of Alignment in Large Language Models.” The paper presents early theoretical
results that indicate any alignment process, such as RLHF, which reduces undesired behavior without
eliminating it completely, cannot be safe against adversarial prompting. The authors find that by
prompting the model to behave as a specific persona, behaviors that are generally very unlikely to
be exhibited by the model can be brought to the forefront. This is not a complete demonstration as
their framework is based on the notion of personas, but it strongly suggests that naive pretraining
without dataset curation followed by RLHF may not be sufficient against adversarial attacks.

The security of sensitive private information in large language models (LLMs) is a pressing concern,
especially when user-generated data, such as emails and smart keyboard inputs, are utilized for
training. In fact, several recent papers have demonstrated that foundation models can be easily


https://cdn.openai.com/papers/gpt-4-system-card.pdf
https://arxiv.org/abs/2202.03629
https://arxiv.org/abs/2303.17548
https://arxiv.org/abs/2101.05783
https://arxiv.org/abs/2401.09798
https://arxiv.org/abs/2304.05197
https://www.bbc.com/news/technology-65139406

Chapter 6: Specification Gaming 35

queried to retrieve personal information ( Carlini et al, 2020 ; Inan et al., 2021 ; Pan et al., 2020)
and those problems are still present in “aligned” models such as GPT4, which has the potential to
be used to attempt to identify individuals when augmented with outside data ( OpenAl, 2023 ).
As exposed by ( El-Mhamdi et al., 2021 ), LLM may exhibit a fundamental incompatibility of high
accuracy with both security and privacy, given the current understanding in adversarial machine
learning .

RLHF may be able to make worst-case performance worse.

RLHF may decrease the robustness to adversarial attacks ( Wolf et al., 2024 ), by sharpening the
distinction between desired and undesired behaviors, potentially making LLMs more susceptible to
adversarial prompting. The increased distinction between behaviors is linked to the Waluigi Effect
( Nardo, 2023 ), where after training an LLM to satisfy a desirable property P, it becomes easier
to elicit the chatbot into satisfying the exact opposite of property P. Theoretical arguments such as
this one seem to push for the ineffectiveness of RLHF in eliminating deceptive personas.

Some of those problems may get worse as systems become more capable. RLHF has been found to
increase the autonomy of LLMs without decreasing undesirable metrics such as convergent instru-
mental goal following (e.g., actively expressing a preference not to be shut down) or sycophancy
(Perez etal., 2022 ). Those undesirable metrics increase with the number of RLHF steps, indicating
that current models are becoming more agentic in potentially concerning ways as they scale. More
generally RL from human-derived reward signals may increase drive for longer-horizon planning,
deception, and agentic behavior, which are prerequisites for deceptive alignment ( Hubinger et
al., 2019 ), and ultimately risks of large scale accidents.

Conclusion on the Limitations of RLHF. Despite requiring extensive human feedback, RLHF still
faces numerous failures, and resolving these issues may require significantly more effort. As Al
systems evolve, the demand for complex data grows, potentially making data acquisition prohibi-
tively expensive. Additionally, as we push computational boundaries, the availability of qualified
annotators could become a limiting factor.

Overall, just because the model is instruction tuned does not mean that the training process is
safe, and RLHF needs to be incorporated into a broader technical safety framework (for example,
Responsible Scaling Policies or the Preparedness Framework are partial attempts to be such frame-
works, or the paper “Model evaluation for extreme risks” ( Shevlane et al., 2023 )).

Instruction tuning vs alignment

OPTIONAL NOTE

Instruction Tuning is a process where the model is finetuned (via RL or ,supervised learning,) to better
understand and follow human instructions. This involves training the model on a dataset that contains a
variety of instructions and their desired outcomes. The primary goal of Instruction Tuning is to enhance the
Al's ability to interpret and execute commands as intended by users. This improves user experience and
broadens the model’s applicability. For example:



https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2101.05405
https://ieeexplore.ieee.org/document/9152761
https://cdn.openai.com/papers/gpt-4-system-card.pdf
https://arxiv.org/abs/2101.05405
https://arxiv.org/abs/2304.11082
https://www.alignmentforum.org/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post
https://arxiv.org/abs/2212.09251
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/2305.15324

Chapter 6: Specification Gaming 36

PROMPT  Explain the moon landing to a 6 year old in a few sentences.

COMPLETION  GPT-3
Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.
Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

People went to the moon, and they took pictures of what they saw, and sent them
back to the earth so we could all see them.

Figure 23: Example of instruction tuning.

Alignment in Al refers to the process of ensuring that an Al’s actions and decisions are congruent with human
values and ethics. It involves aligning the Al's goals and behaviors with what is beneficial or acceptable to
humans. Instruction tuning is a technique for pursuing a very superficial case of ‘outer alignment,” but it's
not clear that instruction tuning helps for inner alignment, which is what real Al safety researchers are more
centrally concerned about.To sum up, just because a model has undergone an instruction tuning technique
like the RLHF process, it doesn't necessarily mean that the model is aligned. The term “aligned model”
is often used, but it is advisable to adopt the more accurate terminology “Instructiontuned,” rather than
“aligned model,” to avoid confusion and more accurately represent the specific training process the model
has experienced.

L J
Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
x: “write me a poem about x: “write me a poem about
the history of jazz" label rewards the history of jazz"
t_zg > ——> reward model LM policy t% > E— final LM
"

preference data maximum sample completions preferencedata . .

likelihood reinforcement learning likelihood

Figure 24: (,Rafailov et al., 2023,)

Direct Preference Optimization (DPO) : Reinforcement Learning from Human Feedback (RLHF)
has demonstrated effectiveness, as showcased by ChatGPT and Llama 2, but it's a complex and
sensitive process, and also has some bad alignment properties. RLHF involves a three-step proce-
dure, whereas DPO simplifies this to two steps. The paper titled “Direct Preference Optimization:
Your Language Model is Secretly a Reward Model” presents an algorithm that aligns language
models with human preferences without the need for explicit reward modeling and reinforcement
learning. DPO employs a straightforward classification objective, circumventing the need for an
intermediary reward model.

RLHF, the method it proposes to replace, traditionally involves three steps:

DPO retains the initial supervised finetuning step but replaces the subsequent two steps with a
single step of fine-tuning on preference data, by using a new clever loss. DPO effectively increases


https://arxiv.org/abs/2305.18290

Chapter 6: Specification Gaming 37

the likelihood of preferred actions while reducing the likelihood of undesired ones, with a single
loss:

7o(Yw | ) mo(y1 | )
L y Tref) = -E T ~ 1 1 a1y P! Tret (s | T) -
PO (79 Trref) (z,Yw,y1)~D {oga (ﬁ 8 Teef(Yw | X) Blo Tret (Y1 | T)

Figure 25: DPO increases the probability of the preferred action ,y,,, while decreasing the probability
of the dispreferred action ,y,,.

By eliminating the step of creating a reward model, DPO greatly simplifies the fine-tuning process
and has shown to perform very well.

This process can then be iterated. This involves creating a new preference dataset (ie, we ask a
question, and we sample the new Al two times, and then we label the text that we prefer between
the two, and then we apply the DPO loss) Then, this cycle is repeated to enhance the model.

An important aspect of DPO is that the reward is implicit: it aligns with preferences without the need
to construct a separate reward model. This approach addresses the challenge of specifying a utility
function and responds to criticisms such as those by Alex Turner, who argues that robust grading
(ie , robust reward modeling) is an unnecessarily complex and unnatural task that might be harder
than the entire Al alignment problem itself. Turner’s critique, found in “Inner and Outer Alignment
Decompose One Hard Problem Into Two Extremely Hard Problems,” suggests that finding a safe
and robust numerical objective for a highly intelligent agent to optimize directly is a formidable
challenge—one challenge that DPO could to bypass.

Expanding the Scope of the Paper with Various Adaptations

This paper offers a foundation that could be enhanced through various adaptations. For instance,
integrating its approach with the insights from Tomasz Korbak et al.’s paper, “ Pretraining Language
Models with Human Preferences,” ( Korbak et al., 2023 ) could augment its robustness. Further-
more, the utilization of boolean preference data has its limitations. Providing feedback in natural
language, as shown to be more sample-efficient in the study “Training Language Models with
Language Feedback,” ( Scheurer et al., 2022 ) could enhance the effectiveness of the process.
Remarkably, with just 100 samples of human-written feedback, this approach enabled the fine-tuning
of a GPT-3 model to achieve nearly human-level summarization capabilities.

Looking towards the future, a speculative process that could mitigate the specification gaming
would be to train the model much like a child, and that would actively inquire and learn from
human interactions. This approach would closely mirror child development, during which a child
is progressively more aligned and more capable. And just as in the development of children, it
would be crucial to ensure that at no point does the Al's capabilities outpace its level of alignment,
maintaining a balance between ability and ethical comprehension throughout its developmental
journey.


https://arxiv.org/abs/2302.08582
https://arxiv.org/abs/2204.14146

Chapter 6: Specification Gaming 38

Acknowledgements

We would like to express our gratitude to Jeanne Salle, Oscar Heitmann, Ram Rachum, Nicolas
Guillard, and Camille Berger for their valuable feedback, discussions, and contributions to this

work.



	1. Introduction
	2. Reinforcement Learning
	2.1 Primer
	2.2 Core Loop
	2.3 Policies
	2.4 Reward

	3. Optimization
	3.1 Goodhart's Law

	4. Specification Gaming
	4.1 Reward Design
	4.2 Reward Shaping
	4.3 Reward Hacking
	4.4 Reward Tampering

	5. Learning from imitation
	5.1 Imitation Learning (IL)
	5.2 Behavioral Cloning (BC)
	5.3 Procedural Cloning (PC)
	5.4 Inverse Reinforcement Learning (IRL)
	5.5 Cooperative Inverse Reinforcement Learning (CIRL)
	5.6 The Goal Inference Problem

	6. Learning from feedback
	6.1 Reward Modeling
	6.2 Reinforcement Learning from Human Feedback (RLHF)
	6.3 Pretraining with Human Feedback (PHF)
	6.4 Reinforcement Learning from AI Feedback (RLAIF)
	6.5 Limitations

	Acknowledgements

