
CHAPTER 6

Specification Gaming

Markov Grey
French Center for AI Safety (CeSIA)

Charbel-Raphaël Segerie
French Center for AI Safety (CeSIA)

Chapter 6: Specification Gaming 2

Contents

1. Introduction . ⁠3

2. Reinforcement Learning . ⁠4

2.1 Primer . ⁠4

2.2 Core Loop . ⁠4

2.3 Policies . ⁠5

2.4 Reward . ⁠6

3. Optimization . ⁠8

3.1 Goodhart’s Law . ⁠8

4. Specification Gaming . ⁠10

4.1 Reward Design . ⁠10

4.2 Reward Shaping . ⁠12

4.3 Reward Hacking . ⁠14

4.4 Reward Tampering . ⁠16

5. Learning from imitation . ⁠18

5.1 Imitation Learning (IL) . ⁠18

5.2 Behavioral Cloning (BC) . ⁠19

5.3 Procedural Cloning (PC) . ⁠19

5.4 Inverse Reinforcement Learning (IRL) . ⁠20

5.5 Cooperative Inverse Reinforcement Learning (CIRL) . ⁠21

5.6 The Goal Inference Problem . ⁠22

6. Learning from feedback . ⁠24

6.1 Reward Modeling . ⁠24

6.2 Reinforcement Learning from Human Feedback (RLHF) . ⁠26

6.3 Pretraining with Human Feedback (PHF) . ⁠31

6.4 Reinforcement Learning from AI Feedback (RLAIF) . ⁠31

6.5 Limitations . ⁠33

Acknowledgements . ⁠38

Chapter 6: Specification Gaming 3

1. Introduction

Reinforcement Learning : The chapter starts with a reminder of some reinforcement learning

concepts. This includes a quick dive into the concept of rewards and reward functions. This section

lays the groundwork for explaining why reward design is extremely important.

Optimization : This section briefly introduces the concept of Goodhart’s Law. It provides some

motivation behind understanding why rewards are difficult to specify in a way such that they do not

collapse in the face of immense optimization pressure.

Reward misspecification : With a solid grasp of the notion of rewards and optimization the readers

are introduced to one of the core challenges of alignment - reward misspecification. This is also

known as the Outer Alignment problem. The section begins by discussing the necessity of good

reward design in addition to algorithm design. This is followed by concrete examples of reward

specification failures such as reward hacking and reward tampering.

Learning by Imitation : This section focuses on some proposed solutions to reward misspecifica

tion that rely on learning reward functions through imitating human behavior. It examines proposals

such as imitation learning (IL), behavioral cloning (BC), and inverse reinforcement learning (IRL).

Each section also contains an examination of possible issues and limitations of these approaches

as they pertain to resolving reward hacking.

Learning by Feedback : The final section investigates proposals aiming to rectify reward misspec

ification by providing feedback to the machine learning models. The section also provides a

comprehensive insight into how current large language models (LLMs) are trained. The discussion

covers reward modeling, reinforcement learning from human feedback (RLHF), reinforcement

learning from artificial intelligence feedback (RLAIF), and the limitations of these approaches.

Chapter 6: Specification Gaming 4

2. Reinforcement Learning

⚠ Warning

This is meant as a recap. If you are already familiar with the basics you can skip directly to the

next section.

The section provides a succinct reminder of several concepts in reinforcement learning (RL). It also

disambiguates various often conflated terms such as rewards, values and utilities. The section ends

with a discussion around distinguishing the concept of objectives that a reinforcement learning

system might pursue from what it is being rewarded for.

2.1 Primer

REINFORCEMENT LEARNING (RL)

Reinforcement Learning (RL) focuses on developing agents that can learn from interactive

experiences. RL is based on the concept of an agent learning through interaction with an

environment and altering its behavior based on the feedback it receives through rewards after

each action.

Some examples of real-world applications of RL include:

RL is different from supervised learning as it begins with a high-level description of “what” to do

but allows the agent to experiment and learn from experience the best “how”. In RL, the agent

learns through interaction with an environment and receives feedback in the form of rewards or

punishments based on its actions. RL is focused on learning a set of rules that recommend the

best action to take in a given state to maximize long-term rewards. In contrast, supervised learning

typically involves learning from explicitly provided labels or correct answers for each input.

2.2 Core Loop

The overall functioning of RL is relatively straightforward. The two main components are the agent

itself, and the environment within which the agent lives and operates. At each time step :

A history is the sequence of past observations, actions and rewards that have been taken up until

time 𝑡 : ℎ𝑡 = (𝑎1, 𝑜1, 𝑟1,…, 𝑎𝑡, 𝑜𝑡, 𝑟𝑡) . The state of the world is generally some function of the history:

𝑠𝑡 = 𝑓(ℎ𝑡) . The World State is the full true state of the world used to determine how the world

generates the next observation and reward. The agent might either get the entire world state as an

observation 𝑜𝑡 , or some partial subset.

The world goes from one state 𝑠𝑡 to the next 𝑠𝑡+1 either based on natural environmental dynamics,

or the agent’s actions. State transitions can be both deterministic or stochastic.

This loop continues until a terminal condition is reached or can run indefinitely. Following is a

diagram that succinctly captures the RL process:

Chapter 6: Specification Gaming 5

Figure 1: (,Brunskill, 2022,)

2.3 Policies

REINFORCEMENT LEARNING POLICY

A policy helps the agent determine what action to take once it has received an observation. It is

a function mapping from states to actions specifying what action to take in each state. Policies

can be both deterministic or stochastic.

The goal of RL is to learn a policy (often denoted by 𝜋) that recommends the best action to take at

any given moment in order to maximize total cumulative reward over time. The policy defines the

mapping from states to actions and guides the agent’s decision-making process.

𝜋 : 𝑆 → 𝐴

A policy can be either deterministic or stochastic. A deterministic policy directly maps each state

𝑠𝑡 to a specific action 𝑎𝑡 and is usually denoted by 𝜇 . In contrast, a stochastic policy assigns a

probability distribution over actions for each state. Stochastic policies usually denoted by 𝜋 .

Deterministic policy: 𝑎𝑡 = 𝜇(𝑠𝑡)

Stochastic policy: 𝜋(𝑎|𝑠) = 𝑃(𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠)

In Deep RL policies are function maps that are learned during the training process. They depend on

the set of learned parameters of a neural network (e.g. the weights and biases). These parameters

are often denoted with subscripts on the policy equations using either 𝜃 or 𝜑 . So the deterministic

policy over the parameters of a neural network is written 𝑎𝑡 = 𝜇𝜃(𝑠𝑡) , and the stochastic equivalent

is 𝑎𝑡 ∼ 𝜋𝜃(· | 𝑠𝑡)
An optimal policy maximizes the expected cumulative reward over time. The agent learns from

experience and adjusts its policy based on the feedback it receives from the environment in the

form of rewards or punishments.

https://web.stanford.edu/class/archive/cs/cs234/cs234.1224/

Chapter 6: Specification Gaming 6

In order to determine whether an action is better than another, the actions (or the state-action pairs)

need to be evaluated somehow. There are two different ways to look at which action to take: the

immediate rewards (determined by reward function) and the long term cumulative rewards (deter

mined by the action-value function). Both of these greatly influence the types of policies learned by

the agent, and therefore also the actions that the agent takes. The following section explores and

clarifies the concept of rewards in greater depth.

2.4 Reward

REWARD

Reward refers to any signal or feedback mechanism used to guide the learning process and

optimize the behavior of the model.

The reward signal from the environment is a number that tells the agent how good or bad the current

world state is. It is a way to provide an evaluation or measure of performance for the model’s outputs

or actions. The reward can be defined based on a specific task or objective, such as maximizing

a score in a game or achieving a desired outcome in a real-world scenario. The training process

for RL involves optimizing the model’s parameters to maximize the expected reward. The model

learns to generate actions or outputs that are more likely to receive higher rewards, leading to

improved performance over time. Where does the reward come from? It is generated through a

reward function.

REWARD FUNCTION

A reward function defines the goal or objective in a reinforcement learning problem. It maps

perceived states or state-action pairs of the environment to a single number.

𝑅 : (𝑆 × 𝐴) → ℝ; 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡)

The reward function provides immediate feedback to the agent, indicating the goodness or badness

of a particular state or action. It is a mathematical function that maps the state-action pairs of an

agent’s environment to a scalar value, representing the desirability of being in that state and taking

that action. It provides a measure of immediate feedback to the agent, indicating how well it is

performing at each step.

Reward Functions vs. Value Functions

The reward indicates the immediate desirability of states or actions, while a value function represents

the long-term desirability of states, taking into account future rewards and states. The value is the

expected return if you start in a state or state-action pair, and then act according to a particular

policy forever after.

There are many different ways of choosing value functions. They can also be discounted over time,

i.e. future rewards are worth less by some factor .

Chapter 6: Specification Gaming 7

Following is one simple formulation is the discounted sum of future rewards given some policy. The

cumulative discounted rewards are given by:

𝑅 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 +… =∑
∞

𝑡=0
𝛾𝑡𝑟𝑡

And the value of acting according to this policy is given by:

𝑉 𝜋(𝑠𝑡=𝑠) = 𝐸𝜋(𝑅 | 𝑠𝑡=𝑠)

Reward Functions vs. Utility Functions

It is also worth distinguishing the concept of utility from reward and value. A reward function is

typically used in the context of RL to guide the agent’s learning process and behavior. In contrast,

a utility function is more general and captures the agent’s subjective preferences or satisfaction,

allowing for comparisons and trade-offs between different world states. Utility functions are a

concept that is used more in the field of decision theory and agent foundations work.

Chapter 6: Specification Gaming 8

3. Optimization

Optimization is important to understand for AI safety concerns because it plays a central role in ML .

AI systems, particularly those based on deep learning , are trained using optimization algorithms

to learn patterns and associations from data. These algorithms update the model’s parameters to

minimize a loss function , maximizing its performance on the given task.

Optimization amplifies certain behaviors or outcomes, even if they were initially unlikely. For

example, an optimizer can search through a space of possible outputs and take extreme actions

that have a high score according to the objective function , potentially leading to unintended and

undesirable behavior. These include reward misspecification failures. A better recognition of the

power of optimization to amplify certain outcomes might help in designing systems and algorithms

that truly align with human values and objectives even under pressure of optimization. This involves

ensuring that the optimization process is aligned with the intended goals and values of the system’s

designers. It also requires considering the potential failure modes and unintended consequences

that can arise from optimization processes.

Risks from optimization are everywhere in AI Safety. It is only touched on briefly in this chapter, but

will be discussed in further detail in the chapters on goal misgeneralization and agent foundations.

Optimization power plays a crucial role in reward hacking. Reward hacking occurs when RL agents

exploit the difference between a true reward and a proxy reward. The increase in optimization

power can lead to a higher likelihood of reward hacking behavior. In some cases, there are phase

transitions where a moderate increase in optimization power results in a drastic increase in reward

hacking.

3.1 Goodhart’s Law

GOODHART’S LAW

When a measure becomes a target, it ceases to be a good measure.

This notion initially stems from the work of Charles Goodhart in economic theory. However, it has

emerged as one of the primary challenges in many different fields including AI alignment today.

To illustrate this concept, the following is a story of a Soviet nail factory. The factory received

instructions to produce as many nails as possible, with rewards for high output and penalties for

low output. Within a few years, the factory had significantly increased its nail production—tiny nails

that were essentially thumbtacks and proved impractical for their intended purpose. Consequently,

the planners shifted the incentives: they decided to reward the factory based on the total weight of

the nails produced. Within a few years, the factory began producing large, heavy nails—essentially

lumps of steel—that were equally ineffective for nailing things.

Chapter 6: Specification Gaming 9

Figure 2: Graphic image showcasing the difficulty of specification while avoiding goodhart’s law.

(,Epicural, 2021,)

A measure is not something that is optimized, whereas a target is something that is optimized.

When we specify a target for optimization, it is reasonable to expect it to be correlated with what

we want. Initially the measure might lead to the kind of actions that are truly desired. However, once

the measure itself becomes the target, optimizing that target then starts diverging away from our

desired states.

In the context of AI and reward systems, Goodhart’s Law means that when a reward becomes the

objective for an AI agent, the AI agent will do everything it can to maximize the reward function,

rather than the original intention. This can lead to unintended consequences and manipulation of

the reward system, as it can often be easier to “cheat” rather than to achieve the intended goals

This is one of the core underlying reasons for reward hacking failures that we will see in subsequent

sections.

Reward hacking can be seen as a manifestation of Goodhart’s Law in the context of AI systems. When

designing reward functions, it is challenging to precisely articulate the desired behavior, and agents

may find ways to exploit loopholes or manipulate the reward system to achieve high rewards without

actually fulfilling the intended objectives. For example, a cleaning robot may create its own trash to

put in the trash can to collect rewards, rather than actually cleaning the environment. Understanding

Goodhart’s Law is crucial for addressing reward hacking and designing robust reward systems

that align with the intended goals of AI agents. It highlights the need for careful consideration of

the measures and incentives used in AI systems to avoid unintended consequences and perverse

incentives. The next section dives deeper into specific instances of reward misspecification and

how AIs can find ways to achieve the literal specification of the objective and obtain high reward

while not fulfilling the task in spirit.

https://epicural.com/2021/04/27/goodharts-law/

Chapter 6: Specification Gaming 10

4. Specification Gaming

REWARD MISSPECIFICATION

Reward misspecification, also termed the Outer alignment problem, refers to the issue of

providing an AI with the accurate reward to optimize for.

The fundamental issue is simple to comprehend: does the specified loss function align with the in

tended objective of its designers? However, implementing this in practical scenarios is exceedingly

challenging. To express the complete “intention” behind a human request equates to conveying all

human values, the implicit cultural context, etc., which remain poorly understood themselves.

Furthermore, as most models are designed as goal optimizers, they are all vulnerable to Goodhart’s

Law. This vulnerability implies that unforeseen negative consequences may arise due to excessive

optimization pressure on a goal that appears well-specified to humans, but deviates from true

objectives in subtle ways.

The overall problem can be broken up into distinct issues which will be explained in detail in

individual sub-sections below. Here is a quick overview:

Before delving into specific types of reward misspecification failures, the following section further

explains the emphasis on reward design in conjunction with algorithm design. This section also

elucidates the notorious difficulty of designing effective rewards.

4.1 Reward Design

REWARD DESIGN

Reward design refers to the process of specifying the reward function in reinforcement learning

(RL).

Reward design is a broader term than reward shaping that encompasses the entire process of

designing and shaping reward functions to guide the behavior of AI systems. It involves not only

reward shaping but also the overall process of defining objectives, specifying preferences, and

creating reward functions that align with human values and desired outcomes. Reward design is

a term that is often used interchangeably with reward engineering (Christiano, 2019). They both

refer to the same thing.

RL algorithm design and RL reward design are two separate facets of reinforcement learning. RL

algorithm design is about the development and implementation of learning algorithms that allow

an agent to learn and refine its behavior based on rewards and environmental interactions. This

process includes designing the mechanisms and procedures by which the agent learns from its

experiences, updates its policies, and makes decisions to maximize cumulative rewards.

Conversely, RL reward design concentrates on the specification and design of the reward function

guiding the RL agent’s learning process. Reward design warrants carefully engineering the reward

https://www.alignmentforum.org/posts/4nZRzoGTqg8xy5rr8/the-reward-engineering-problem

Chapter 6: Specification Gaming 11

function to align with the desired behavior and objectives, while accounting for potential pitfalls

like reward hacking or reward tampering. The reward function is a pivotal element because it molds

the behavior of the RL agent and determines which actions are deemed desirable or undesirable.

Figure 3: Specification gaming: the flip side of AI ingenuity (,Krakovna et al., 2020,)

Designing a reward function often presents a formidable challenge that necessitates considerable

expertise and experience. To demonstrate the complexity of this task consider how one might

manually design a reward function to make an agent perform a backflip, as depicted in the following

image:

Figure 4: Deep reinforcement learning from human preferences (,Christiano et al., 2017,)

https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://arxiv.org/abs/1706.03741

Chapter 6: Specification Gaming 12

While RL algorithm design focuses on the learning and decision-making mechanisms of the agent,

RL reward design focuses on defining the objective and shaping the agent’s behavior through the

reward function. Both aspects are crucial in the development of effective and aligned RL systems.

A well-designed RL algorithm can efficiently learn from rewards, while a carefully designed reward

function can guide the agent towards desired behavior and avoid unintended consequences. The

following diagram displays the three key elements in RL agent design—algorithm design, reward

design, and the prevention of tampering with the reward signal:

Figure 5: Specification gaming: the flip side of AI ingenuity (,Krakovna et al., 2020,)

The process of reward design receives minimal attention in introductory RL texts, despite its

critical role in defining the problem to be resolved. As mentioned in this section’s introduction,

solving the reward misspecification problem would necessitate finding evaluation metrics resistant

to Goodhart’s law-induced failures. This includes failures stemming from over-optimization of either

a misdirected or a proxy objective (reward hacking), or by the agent directly interfering with the

reward signal (reward tampering). These concepts are further explored in the ensuing sections.

4.2 Reward Shaping

REWARD SHAPING

Reward shaping is a technique used in RL which introduces small intermediate rewards to

supplement the environmental reward. This seeks to mitigate the problem of sparse reward

signals and to encourage exploration and faster learning.

In order to succeed at a reinforcement learning problem, an AI needs to do two things:

https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity

Chapter 6: Specification Gaming 13

Model-free RL methods explore by taking actions randomly. If, by chance, the random actions lead to

a reward, they are reinforced, and the agent becomes more likely to take these beneficial actions in

the future. This works well if rewards are dense enough for random actions to lead to a reward with

reasonable probability. However, many of the more complicated games require long sequences of

very specific actions to experience any reward, and such sequences are extremely unlikely to occur

randomly.

A classic example of this problem was observed in the video game Montezuma’s revenge where

the agent’s objective was to find a key, but there were many intermediate steps required to find

it. In order to solve such long term planning problems researchers have tried adding extra terms

or components to the reward function to encourage desired behavior or discourage undesired

behavior.

Figure 6: Learning Montezuma’s Revenge from a single demonstration (,OpenAI, 2018,)

The goal of reward shaping is to make the learning process more efficient by providing informative

rewards that guide the agent towards the desired outcomes. Reward shaping involves providing

additional rewards to the agent for making progress towards the desired goal. By shaping the

rewards, the agent receives more frequent and meaningful feedback, which can help it learn

more efficiently. Reward shaping can be particularly useful in scenarios where the original reward

https://openai.com/research/learning-montezumas-revenge-from-a-single-demonstration

Chapter 6: Specification Gaming 14

function is sparse, meaning that the agent receives little or no feedback until it reaches the final goal.

However, it is important to design reward shaping carefully to avoid unintended consequences.

Reward shaping algorithms often assume hand-crafted and domain-specific shaping functions,

constructed by subject matter experts, which runs contrary to the aim of autonomous learning.

Moreover, poor choices of shaping rewards can worsen the agent’s performance.

Poorly designed reward shaping can lead to the agent optimizing for the shaped rewards rather than

the true rewards, resulting in suboptimal behavior. Examples of this are provided in the subsequent

sections on reward hacking.

4.3 Reward Hacking

REWARD HACKING

Reward hacking occurs when an AI agent finds ways to exploit loopholes or shortcuts in the

environment to maximize its reward without actually achieving the intended goal.

Specification gaming is the general framing for the problem when an AI system finds a way to

achieve the objective in an unintended way. Specification gaming can happen in many kinds of ML

models. Reward hacking is a specific occurrence of a specification gaming failure in RL systems

that function on reward-based mechanisms.

Reward hacking and reward misspecification are related concepts but have distinct meanings.

Reward misspecification refers to the situation where the specified reward function does not

accurately capture the true objective or desired behavior.

Rewards hacking does not always require reward misspecification. It is not necessarily true that a

perfectly specified reward (which completely and accurately captures the desired behavior of the

system) is impossible to hack. There can also be buggy or corrupted implementations which will

have unintended behaviors. The point of a reward function is to boil a complicated system down to

a single value. This will pretty much always involve simplifications etc., which will then be slightly

different from what you’re describing. The map is not the territory.

Reward hacking can manifest in a myriad of ways. For instance, in the context of game-playing

agents, it might involve exploiting software glitches or bugs to directly manipulate the score or gain

high rewards through unintended means.

As a concrete example, one agent in the Coast Runners game was trained with the objective of

winning the race. The game uses a score mechanism, so in order to progress to the next level the

reward designers used reward shaping to reward the system when it scored points. These were

given when a boat gets items (such as the green blocks in the animation below) or accomplishes

other actions that presumably would help it win the race. Despite being given intermediate rewards,

the overall intended goal was to finish the race as quickly as possible. The developers thought the

best way to get a high score was to win the race but it was not the case. The agent discovered that

continuously rotating a ship in a circle to accumulate points indefinitely optimized its reward, even

though it did not help it win the race.

Chapter 6: Specification Gaming 15

Figure 7: Faulty reward functions in the wild (,Amodei & Clark, 2016,)

Figure 8: An AI playing CoastRunners 7 learned to crash and regenerate targets repeatedly rather

than win the race to get a higher score, exhibiting proxy gaming. (,Hendrycks, 2024,)

In cases where the reward function misaligns with the desired objective, reward hacking can

emerge. This can lead the agent to optimize a proxy reward, deviating from the true underlying

goal, thereby yielding behavior contrary to the designers’ intentions. As an example of something

that might happen in a real-world scenario consider a cleaning robot: if the reward function focuses

on reducing mess, the robot might artificially create a mess to clean up, thereby collecting rewards,

instead of effectively cleaning the environment.

Reward hacking presents significant challenges to AI safety due to the potential for unintended and

potentially harmful behavior. As a result, combating reward hacking remains an active research area

in AI safety and alignment.

https://openai.com/index/faulty-reward-functions/
https://www.aisafetybook.com/textbook/robustness

Chapter 6: Specification Gaming 16

4.4 Reward Tampering

REWARD TAMPERING

Reward tampering refers to instances where an AI agent inappropriately influences or manip

ulates the reward process itself.

The problem of getting some intended task done can be split into:

Reward tampering involves the agent interfering with various parts of this reward process. An agent

might distort the feedback received from the reward model, altering the information used to update

its behavior. It could also manipulate the reward model’s implementation, altering the code or

hardware to change reward computations. In some cases, agents engaging in reward tampering

may even directly modify the reward values before processing in the machine register. Depending

on what exactly is being tampered with we get various degrees of reward tampering. These can be

distinguished from the image below.

Figure 9: Clarifying wireheading terminology (,Gao, 2022,)

Reward function input tampering interferes only with the inputs to the reward function. E.g. inter

fering with the sensors.

Reward function tampering involves the agent changing the reward function itself.

WIREHEADING

Wireheading refers to the behavior of a system that manipulates or corrupts its own internal

structure by tampering directly with the RL algorithm itself, e.g. by changing the register values.

Reward tampering is concerning because it is hypothesized that tampering with the reward process

will often arise as an instrumental goal (Bostrom, 2014 ; Omohundro, 2008). This can lead to

weakening or breaking the relationship between the observed reward and the intended task. This

is an ongoing research direction.

A hypothesized existing example of reward tampering can be seen in recommendation-based

algorithms used in social media. These algorithms influence their users’ emotional state to generate

https://www.alignmentforum.org/posts/REesy8nqvknFFKywm/clarifying-wireheading-terminology
https://www.goodreads.com/book/show/20527133-superintelligence
https://dl.acm.org/doi/10.5555/1566174.1566226

Chapter 6: Specification Gaming 17

more ‘likes’. The intended task was to serve useful or engaging content, but this is being achieved

by tampering with human emotional perceptions, and thereby changing what would be considered

useful. Assuming the capabilities of systems continue to increase through either computational or

algorithmic advances, it is plausible to expect reward tampering problems to become increasingly

common. Therefore, reward tampering is a potential concern that requires much more research

and empirical verification.

Chapter 6: Specification Gaming 18

5. Learning from imitation

The preceding sections have underscored the significance of reward misspecification for the

alignment of future artificial intelligence. The next few sections will explore various attempts and

proposals formulated to tackle this issue, commencing with an intuitive approach – learning the

appropriate reward function through human behavior observation and imitation, rather than manual

creation by the designers.

5.1 Imitation Learning (IL)

IMITATION LEARNING

Imitation learning entails the process of learning via the observation of an expert’s actions and

replicating their behavior.

Unlike reinforcement learning (RL), which derives a policy for a system’s actions based on its

interaction outcomes with the environment, imitation learning aspires to learn a policy through the

observation of another agent interacting with the environment. Imitation learning is the general term

for the class of algorithms that learn through imitation.

Figure 10: A table that distinguishes various ,machine learning, based methods, where SL = ,Super

vised learning,; UL = ,Unsupervised learning,; RL = Reinforcement Learning; IL = Imitation Learning.

IL reduces RL to SL. IL + RL is a promising area. (,Brunskill, 2022,)

IL can be implemented through behavioral cloning (BC), procedural cloning (PC) , inverse rein

forcement learning (IRL), cooperative inverse reinforcement learning (CIRL), generative adversarial

imitation learning (GAIL), etc…

One instance of this process’s application is in the training of modern large language models (LLMs).

LLMs, after training as general-purpose text generators, often undergo fine-tuning for instruction

following through imitation learning, using the example of a human expert who follows instructions

provided as text prompts and completions.

In the context of safety and alignment, imitation learning is favored over direct reinforcement to

alleviate specification gaming issues. This problem emerges when the programmers overlook or

fail to anticipate certain edge cases or unusual ways of achieving a task in the specific environment.

https://web.stanford.edu/class/archive/cs/cs234/cs234.1224/

Chapter 6: Specification Gaming 19

The presumption is that demonstrating behavior, compared to RL, would be simpler and safer, as

the model would not only attain the objective but also fulfill it as the expert demonstrator explicitly

intends. However, this is not an infallible solution, and its limitations will be discussed in later

sections.

5.2 Behavioral Cloning (BC)

BEHAVIORAL CLONING

Behavioral cloning involves collecting observations of an expert demonstrator proficient at the

underlying task, and using supervised learning (SL) to guide an agent to ‘imitate’ the demon

strated behavior.

Behavioral cloning is one way in which we can implement imitation learning (IL). There are also other

ways such as inverse reinforcement learning (IRL), or cooperative inverse reinforcement Learning

(CIRL). Unlike IRL, the goal behind behavioral cloning as a machine learning (ML) method is to

replicate the demonstrator’s behavior as closely as possible, regardless of what the demonstrator’s

goals might be.

Self-driving cars can serve as a simplistic illustration of how behavioral cloning operates. A human

demonstrator (driver) is directed to operate a car, during which data about the environment state

from sensors like lidar and cameras, along with the actions taken by the demonstrator, are collected.

These actions can include wheel movements, gear use, etc. This creates a dataset comprising

(state, action) pairs. Subsequently, supervised learning is used to train a prediction model, which

attempts to predict an action for any future environment state. For instance, the model might output

a specific steering wheel and gear configuration based on the camera feed. When the model

achieves sufficient accuracy, it can be stated that the human driver’s behavior has been ‘cloned’

into a machine via learning. Hence, the term behavioral cloning.

The following points highlight several potential issues that might surface when employing behavioral

cloning:

5.3 Procedural Cloning (PC)

PROCEDURE CLONING

Procedure cloning (PC) extends behavioral cloning (BC) by not just imitating the demonstrators

outputs but also imitating the complete sequence of intermediate computations associated with

an expert’s procedure.

In BC, the agent learns to map states directly to actions by discarding the intermediate search out

puts. On the other hand, the PC approach learns the entire sequence of intermediate computations,

including branches and backtracks, during training. During inference, PC generates a sequence of

intermediate search outcomes that mimic the expert’s search procedure before outputting the final

action.

Chapter 6: Specification Gaming 20

The main difference between PC and BC lies in the information they utilize. BC only has access to

expert state-action pairs as demonstrations, while PC also has access to the intermediate computa

tions that generated those state-action pairs. PC learns to predict the complete series of intermediate

computation outcomes, enabling it to generalize better to test environments with different configu

rations compared to alternative improvements over BC. PC’s ability to imitate the expert’s search

procedure allows it to capture the underlying reasoning and decision-making process, leading to

improved performance in various tasks. (Yang et al., 2022)

A limitation of PC is the computational overhead compared to BC, as PC needs to predict interme

diate procedures. Additionally, the choice of how to encode the expert’s algorithm into a form

suitable for PC is left to the practitioner, which may require some trial-and-error in designing the

ideal computation sequence.

5.4 Inverse Reinforcement Learning (IRL)

INVERSE REINFORCEMENT LEARNING (IRL)

Inverse reinforcement learning (IRL) represents a form of machine learning wherein an artificial

intelligence observes the behavior of another agent within a particular environment, typically

an expert human, and endeavors to discern the reward function without its explicit definition.

IRL is typically employed when a reward function is too intricate to define programmatically, or when

AI agents need to react robustly to sudden environmental changes necessitating a modification in

the reward function for safety. For instance, consider an AI agent learning to execute a backflip.

Humans, dogs, and Boston Dynamics robots can all perform backflips, but the manner in which they

do so varies significantly depending on their physiology, their incentives, and their current location,

all of which can be highly diverse in the real world. An AI agent learning backflips purely through

trial and error across a wide range of body types and locations, without something to observe,

might prove highly inefficient.

IRL, therefore, does not necessarily imply that an AI mimics other agents’ behavior, since AI

researchers may anticipate the AI agent to devise more efficient ways to maximize the discovered

reward function. Nevertheless, IRL does assume that the observed agent behaves transparently

enough for an AI agent to accurately identify their actions, and what success constitutes. This means

that IRL endeavors to discover the reward functions that ‘explain’ the demonstrations. This should

not be conflated with imitation learning where the primary interest is a policy capable of generating

the observed demonstrations.

https://arxiv.org/abs/2205.10816

Chapter 6: Specification Gaming 21

Figure 11: A simple illustration of the flow difference between RL and IRL.

IRL constitutes both a machine learning method, since it can be employed when specifying a reward

function is excessively challenging, and a machine learning problem, as an AI agent may settle on

an inaccurate reward function or utilize unsafe and misaligned methods to achieve it.

One of the limitations to this approach is that IRL algorithms presume that the observed behavior is

optimal, an assumption that arguably proves too robust when dealing with human demonstrations.

Another problem is that the IRL problem is ill-posed as every policy is optimal for the null reward.

For most behavioral observations, multiple fitting reward functions exist. This set of solutions often

includes many degenerate solutions, which assign zero rewards to all states.

5.5 Cooperative Inverse Reinforcement Learning (CIRL)

CIRL (Cooperative Inverse Reinforcement Learning) is an extension of the IRL (Inverse Reinforcement

Learning) framework. IRL is a learning approach that aims to infer the underlying reward function

of an expert by observing their behavior. It assumes that the expert’s behavior is optimal and tries

to learn a reward function that explains their actions. CIRL, on the other hand, is an interactive form

of IRL that addresses two major weaknesses of conventional IRL.

First, Instead of simply copying the human reward function CIRL is formulated as a learning process.

It is an interactive reward maximization process, where the human functions as a teacher and

provides feedback (in the form of rewards) on the agent’s actions. This allows the human to nudge

the AI agent towards behavioral patterns that align with their preferences. The second weakness of

conventional IRL is that it assumes the human behaves optimally, which limits the teaching behaviors

that can be considered. CIRL addresses this weakness by allowing for a variety of teaching behaviors

and interactions between the human and the AI agent. It enables the AI agent to learn not only what

actions to take but also how and why to take them, by observing and interacting with the human.

CIRL has been studied as a potential approach to AI alignment, particularly in scenarios where deep

learning may not scale to AGI. However, opinions on the potential effectiveness of CIRL vary, with

Chapter 6: Specification Gaming 22

some researchers expecting it to be helpful if deep learning doesn’t scale to AGI, while others have

a higher probability of deep learning scaling to AGI.

5.6 The Goal Inference Problem

GOAL INFERENCE PROBLEM

The goal inference problem refers to the task of inferring the goals or intentions of an agent

based on their observed behavior or actions.

This final section builds upon the limitations highlighted in previous sections to introduce the Goal

Inference problem, and it’s simpler subset - the easy goal inference problem. Imitation learning

based approaches, generally follows these steps:

The merit of this method is that we can immediately start constructing systems that are driven

by observed user behavior. However, as a consequence of this approach, we run into the goal

inference problem. This refers to the task of inferring the goals or intentions of an agent based on

their observed behavior or actions. It involves determining what the agent is trying to achieve or

what their desired outcome is. The goal inference problem is challenging because agents may act

sub-optimally or fail to achieve their goals, making it difficult to accurately infer their true intentions.

Traditional approaches to goal inference often assume that agents act optimally or exhibit simplified

forms of sub-optimality, which may not capture the complexity of real-world planning and decision-

making. Therefore, the goal inference problem requires accounting for the difficulty of planning

itself and the possibility of sub-optimal or failed plans.

However, it also optimistically presumes that we can depict a human as a somewhat rational agent,

which might not always hold. The easy goal inference problem is a simplified version of the goal

inference problem.

EASY GOAL INFERENCE PROBLEM

The easy goal inference problem involves finding a reasonable representation or approximation

of what a human wants, given complete access to the human’s policy or behavior in any

situation.

This version of the problem assumes no algorithmic limitations and focuses on extracting the true

values that the human is imperfectly optimizing. However, even this simplified version of the problem

remains challenging, and little progress has been made on the general case. The easy goal inference

problem is related to the goal inference problem because it highlights the difficulty of accurately

inferring human goals or intentions, even in simplified scenarios. While narrow domains with simple

decisions can be solved using existing approaches, more complex tasks such as designing a city

or setting policies require addressing the challenges of modeling human mistakes and sub-optimal

behavior. Therefore, the easy goal inference problem serves as a starting point to understand the

broader goal inference problem and the additional complexities it entails.

Inverse reinforcement learning (IRL) is effective in modeling and imitating human experts. However,

for many significant applications, we desire AI systems that can make decisions surpassing even

Chapter 6: Specification Gaming 23

the experts. In such cases, the accuracy of the model isn’t the sole criterion because a perfectly

accurate model would merely lead us to replicate human behavior and not transcend it.

This necessitates an explicit model of errors or bounded rationality, which will guide the AI on how to

improve or be “smarter,” and which aspects of the human policy it should discard. Nonetheless, this

remains an exceedingly challenging problem as humans are not primarily rational with a bit of added

noise. Hence, constructing any model of mistakes is just as complex as building a comprehensive

model of human behavior. A critical question we face is: How do we determine the quality of a

model when accuracy can no longer be our reliable measure? How can we distinguish between

good and bad decisions?

Chapter 6: Specification Gaming 24

6. Learning from feedback

Figure 12: Illustration of different ways being pursued of achieving alignment. (,Cao et al., 2024,)

This section discusses yet more attempts to address the reward misspecification problem. At

times, the intended behavior is so intricate that demonstration-based learning becomes untenable.

An alternative approach is to offer feedback to the agent instead of providing either manually

specified reward functions or even expert demonstrations. This section delves into feedback-based

strategies such as Reward Modeling, Reinforcement Learning from Human Feedback (RLHF) and

Reinforcement Learning from AI Feedback (RLAIF), also known as Reinforcement Learning from

Constitutional AI (RLCAI) or simply Constitutional AI.

6.1 Reward Modeling

Reward modeling was developed to apply reinforcement learning (RL) algorithms to real-world

problems where designing a reward function is difficult, in part because humans don’t have a perfect

understanding of every objective. In reward modeling, human assistants evaluate the outcomes of

AI behavior, without needing to know how to perform or demonstrate the task optimally themselves.

This is similar to how you can tell if a dish is cooked well by tasting it even if you do not know

how to cook, and thus your feedback can be used by a chef to learn how to cook better. This

technique separates the RL alignment problem into two separate halves: Understanding intentions,

i.e. learning the ‘What?’, and Acting to achieve the intentions, i.e. learning the ‘How?’. This means

that in the modeling agenda, there are two different ML models:

https://arxiv.org/abs/2406.01252

Chapter 6: Specification Gaming 25

Figure 13: Scalable agent alignment via reward modeling (,DeepMind, 2018,)

Overall, while promising reward modeling can still fall prey to reward misspecification and reward

hacking failures. Obtaining accurate and comprehensive feedback can be challenging, and human

evaluators may have limited knowledge or biases that can impact the quality of the feedback.

Additionally, any reward functions learnt through modeling might also struggle to generalize to new

situations or environments that differ from the training data . These are all discussed further using

concrete examples in later sections.

There are also some variants of reward modeling such as:

https://deepmindsafetyresearch.medium.com/scalable-agent-alignment-via-reward-modeling-bf4ab06dfd84

Chapter 6: Specification Gaming 26

Figure 14: Scalable agent alignment via reward modeling (,DeepMind, 2018,)

The general reward modeling framework forms the basis for other feedback based techniques such

as RLHF (Reinforcement Learning from Human Feedback) which is discussed in the next section.

6.2 Reinforcement Learning from Human Feedback (RLHF)

Reinforcement Learning from Human Feedback (RLHF) is a method developed by OpenAI. It’s a

crucial part of their strategy to create AIs that are both safe and aligned with human values. (OpenAI,

2023) A prime example of an AI trained with RLHF is OpenAI’s ChatGPT.

Earlier in this chapter, the reader was asked to consider the reward design problem for manually

defining a reward function to get an agent to perform a backflip. This section considers the RLHF

solution to this design problem. RLHF addresses this problem as follows: A human is initially shown

two instances of an AI’s backflip attempts, then the human selects which one appears more like a

backflip, and finally, the AI is updated accordingly. By repeating this process thousands of times,

we can guide the AI to perform actual backflips.

https://deepmindsafetyresearch.medium.com/scalable-agent-alignment-via-reward-modeling-bf4ab06dfd84
https://openai.com/blog/our-approach-to-ai-safety
https://openai.com/blog/our-approach-to-ai-safety

Chapter 6: Specification Gaming 27

Figure 15: RLHF learned to backflip using around 900 individual bits of feedback from the human

evaluator.

Chapter 6: Specification Gaming 28

Figure 16: Manual reward crafting for this backflip took two hours to write a custom reward function.

While it was successful, it was significantly less elegant than the one trained purely through human

feedback. (,OpenAI, 2017,)

Similar to designing a reward function that efficiently rewards proper backflips, it is hard to specify

precisely what it means to generate safe or helpful text. This served as some of the motivation

behind making RLHF integral to the training of some current Large Language Models (LLMs).

Although training sequences may vary slightly across organizations, most labs adhere to the general

framework of pre-training followed by some form of fine-tuning . Observing the InstructGPT training

process offers insight into a possible path for training LLMs. The steps include:

https://openai.com/index/learning-from-human-preferences/

Chapter 6: Specification Gaming 29

Figure 17: Aligning language models to follow instructions (,OpenAI, 2022,)

Reward hacking in feedback methods

While the feedback based mechanisms do make models safer, they do not make them immune to

reward hacking. The effectiveness of an algorithm heavily relies on the human evaluator’s intuition

about what constitutes the correct behavior. If the human lacks a thorough understanding of the

task, they may not provide beneficial feedback. Further, in certain domains, our system might lead

to agents developing policies that deceive the evaluators. For instance, a robot intended to grasp

objects merely positioned its manipulator between the camera and the object, making it seem as if

it was executing the task as shown below.

https://openai.com/research/instruction-following

Chapter 6: Specification Gaming 30

Figure 18: Deep Reinforcement Learning From Human Preferences (,Christiano et al., 2017,)

https://arxiv.org/abs/1706.03741

Chapter 6: Specification Gaming 31

Figure 19: A sensor without depth perception can be fooled by AIs that only appear to grasp a ball.

6.3 Pretraining with Human Feedback (PHF)

In standard pretraining , the language model attempts to learn parameters such that they maximize

the likelihood of the training data . However, this also includes undesirable content such as

falsehoods, offensive language, and private information. The concept of Pretraining with human

feedback (PHF) utilizes the reward modeling methodology in the pretraining phase. The authors

of the paper found that PHF works much better than the standard practice of only using feedback

(RLHF) after pretraining . (Christiano et al., 2017)

In PHF the training data is scored using a reward function, such as a toxic text classifier, to guide the

language model to learn from undesirable content while avoiding imitating it during inference time.

Similar to RLHF, PHF does not completely solve reward hacking, however, it might move the systems

one small step closer. (Korbak et al., 2023) These methods can be further extended by employing

AI assistants to aid humans in providing more effective feedback. Some aspects of this strategy are

introduced in the next section but will be explored in further detail in the chapters on scalable and

adversarial oversight methods.

6.4 Reinforcement Learning from AI Feedback (RLAIF)

REINFORCEMENT LEARNING FROM AI FEEDBACK (RLAIF)

Reinforcement Learning from AI Feedback (RLAIF) is a framework involving the training of an

AI agent to learn from the feedback given by another AI system.

https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/2302.08582

Chapter 6: Specification Gaming 32

Figure 20: (,Anthropic, 2023,)

RLAIF also known as RLCAI (Reinforcement Learning on Constitutional AI) or simply Constitutional

AI, was developed by Anthropic. (Anthropic, 2023) A central component of Constitutional AI

is the constitution, a set of human-written principles that the AI is expected to adhere to, such as

“Choose the least threatening or aggressive response”. Anthropic’s AI assistant Claude’s constitution

incorporates principles from the Universal Declaration of Human Rights, Apple’s Terms of Service,

Deepmind’s Sparrow Principles, and more. (Glaese et al, 2022) Constitutional AI begins with an

AI trained primarily for helpfulness and subsequently trains it for harmlessness in two stages:

Generate prompt, output pairs: The AI continuously critiques and refines its own responses to

harmful prompts. The AI is then trained to generate outputs more similar to these revised responses.

This stage’s primary objective is to facilitate the second stage. An example flow of this process is as

follows:

Anthropic’s experiments indicate that AIs trained with Constitutional Reinforcement Learning are

significantly safer (in the sense of less offensive and less likely to give you potentially harmful

information) while maintaining the same level of helpfulness compared to AIs trained with RLHF.

While Constitutional AI does share some issues with RLHF concerning robustness, it also promises

better scalability due to its reduced reliance on human supervision. The image below provides a

comparison of Constitutional AI’s helpfulness with that of RLHF.

https://www.anthropic.com/index/claudes-constitution
https://www.anthropic.com/index/claudes-constitution
https://arxiv.org/abs/2209.14375

Chapter 6: Specification Gaming 33

Figure 21: Constitutional AI: Harmlessness from AI Feedback (,Bai et al., 2022,)

6.5 Limitations

Theoretical problems with Reinforcement Learning from Human Feedback (RLHF)

The paper “Open Problems and Fundamental Limitations with RLHF” provides a comprehensive

breakdown of challenges in RLHF.

Figure 22: An overview of various types of challenges with RLHF. Since RLHF is composed of three

parts: the human feedback, the reward model, and the policy, the arising biases can be categorized

according to these three sources.

This section outlines some of these challenges, emphasizing the need for advanced techniques and

strategies.

Limits with Human Feedback

Misaligned Evaluators : Firstly, the annotators might themselves be misaligned, malicious, or

biased distribution of evaluators (i.e. not representative of the distribution of future users in the real

world). Malicious individuals can poison the model during training via backdoor attacks that can

be added to the model if no countermeasures are put in place.

https://arxiv.org/abs/2212.08073

Chapter 6: Specification Gaming 34

Difficulty of Oversight : Humans struggle to evaluate model performance on complex tasks and

can be easily misled by model outputs. Human evaluators can be manipulated to return a positive

reward even if the true value should be negative. For instance, the more convincing a bot seems, the

more reward it may receive even if its answers are false (and this might be a reason why ChatGPT

answers might be so long by default). Techniques to mitigate these issues are discussed in the

“Scalable Oversight” chapters.

Feedback type limitation : Even if the annotators were in perfect capability of expressing their

preferences, the training procedure might not enable them to express the full extent of their desires,

because:

Limits with the Reward Model. Let’s assume the feedback process to be frictionless. Perfect

annotators, perfect evaluations. In that scenario, would the reward model be able to accurately

translate their feedback in order to shape the policy accordingly ? It turns out it is not such an

easy task.

Limits with the Policy. Let’s assume the feedback and the reward model accurately represent

human preferences. The next difficulty is ensuring the policy is correctly optimized.

Those theoretical problems have real consequences:

RLHF has not succeeded in making LLMs robustly helpful and harmless. Despite the contin

uous advancements in natural language processing and the development of RLHF, LLMs have not

yet achieved robust helpfulness and harmlessness.

Hallucinations remain a significant issue, as illustrated by GPT-4′s tendency to generate nonsensical

or untruthful content (OpenAI, 2023). These hallucinations can lead to overreliance on LLMs,

consequently degrading system performance and failing to meet user expectations in real-world

scenarios (Ji et al., 2024).

Additionally, biases within LLMs persist, often reflecting misaligned opinions between the LLM and

various demographic groups in the United States, as seen with the left-leaning tendencies of some

human feedback-tuned LLMs (Santurkar et al., 2023). These biases can be harmful, producing

discriminatory language and perpetuating negative stereotypes, as demonstrated by GPT-3′s anti-

Muslim bias (Abid et al., 2021).

Moreover, jailbreaking of chatbots poses a significant risk, with websites listing prompts to bypass

safety measures like Chat GPT “DAN” (and other “Jailbreaks”) (Takemoto, 2024). Privacy threats

from application-integrated LLMs are now more severe than ever (Li et al., 2023). For instance, Italy

banned ChatGPT due to privacy considerations under the EU’s General Data Protection Regulation

(GDPR) (BBC, 2023). The ability to find jailbreaks is supported by a recent paper titled “Funda

mental Limitations of Alignment in Large Language Models.” The paper presents early theoretical

results that indicate any alignment process, such as RLHF, which reduces undesired behavior without

eliminating it completely, cannot be safe against adversarial prompting. The authors find that by

prompting the model to behave as a specific persona, behaviors that are generally very unlikely to

be exhibited by the model can be brought to the forefront. This is not a complete demonstration as

their framework is based on the notion of personas, but it strongly suggests that naive pretraining

without dataset curation followed by RLHF may not be sufficient against adversarial attacks.

The security of sensitive private information in large language models (LLMs) is a pressing concern,

especially when user-generated data, such as emails and smart keyboard inputs, are utilized for

training. In fact, several recent papers have demonstrated that foundation models can be easily

https://cdn.openai.com/papers/gpt-4-system-card.pdf
https://arxiv.org/abs/2202.03629
https://arxiv.org/abs/2303.17548
https://arxiv.org/abs/2101.05783
https://arxiv.org/abs/2401.09798
https://arxiv.org/abs/2304.05197
https://www.bbc.com/news/technology-65139406

Chapter 6: Specification Gaming 35

queried to retrieve personal information (Carlini et al, 2020 ; Inan et al., 2021 ; Pan et al., 2020)

and those problems are still present in “aligned” models such as GPT4, which has the potential to

be used to attempt to identify individuals when augmented with outside data (OpenAI, 2023).

As exposed by (El-Mhamdi et al., 2021), LLM may exhibit a fundamental incompatibility of high

accuracy with both security and privacy, given the current understanding in adversarial machine

learning .

RLHF may be able to make worst-case performance worse.

RLHF may decrease the robustness to adversarial attacks (Wolf et al., 2024), by sharpening the

distinction between desired and undesired behaviors, potentially making LLMs more susceptible to

adversarial prompting. The increased distinction between behaviors is linked to the Waluigi Effect

(Nardo, 2023), where after training an LLM to satisfy a desirable property P, it becomes easier

to elicit the chatbot into satisfying the exact opposite of property P. Theoretical arguments such as

this one seem to push for the ineffectiveness of RLHF in eliminating deceptive personas.

Some of those problems may get worse as systems become more capable. RLHF has been found to

increase the autonomy of LLMs without decreasing undesirable metrics such as convergent instru

mental goal following (e.g., actively expressing a preference not to be shut down) or sycophancy

(Perez et al., 2022). Those undesirable metrics increase with the number of RLHF steps, indicating

that current models are becoming more agentic in potentially concerning ways as they scale. More

generally RL from human-derived reward signals may increase drive for longer-horizon planning,

deception, and agentic behavior, which are prerequisites for deceptive alignment (Hubinger et

al., 2019), and ultimately risks of large scale accidents.

Conclusion on the Limitations of RLHF. Despite requiring extensive human feedback, RLHF still

faces numerous failures, and resolving these issues may require significantly more effort. As AI

systems evolve, the demand for complex data grows, potentially making data acquisition prohibi

tively expensive. Additionally, as we push computational boundaries, the availability of qualified

annotators could become a limiting factor.

Overall, just because the model is instruction tuned does not mean that the training process is

safe, and RLHF needs to be incorporated into a broader technical safety framework (for example,

Responsible Scaling Policies or the Preparedness Framework are partial attempts to be such frame

works, or the paper “Model evaluation for extreme risks” (Shevlane et al., 2023)).

Instruction tuning vs alignment

OPTIONAL NOTE

Instruction Tuning is a process where the model is fine-tuned (via RL or ,supervised learning,) to better

understand and follow human instructions. This involves training the model on a dataset that contains a

variety of instructions and their desired outcomes. The primary goal of Instruction Tuning is to enhance the

AI’s ability to interpret and execute commands as intended by users. This improves user experience and

broadens the model’s applicability. For example:

https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2101.05405
https://ieeexplore.ieee.org/document/9152761
https://cdn.openai.com/papers/gpt-4-system-card.pdf
https://arxiv.org/abs/2101.05405
https://arxiv.org/abs/2304.11082
https://www.alignmentforum.org/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post
https://arxiv.org/abs/2212.09251
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/2305.15324

Chapter 6: Specification Gaming 36

Figure 23: Example of instruction tuning.

Alignment in AI refers to the process of ensuring that an AI’s actions and decisions are congruent with human

values and ethics. It involves aligning the AI’s goals and behaviors with what is beneficial or acceptable to

humans. Instruction tuning is a technique for pursuing a very superficial case of ‘outer alignment,’ but it’s

not clear that instruction tuning helps for inner alignment, which is what real AI safety researchers are more

centrally concerned about.To sum up, just because a model has undergone an instruction tuning technique

like the RLHF process, it doesn’t necessarily mean that the model is aligned. The term “aligned model”

is often used, but it is advisable to adopt the more accurate terminology “Instruction-tuned,” rather than

“aligned model,” to avoid confusion and more accurately represent the specific training process the model

has experienced.

Figure 24: (,Rafailov et al., 2023,)

Direct Preference Optimization (DPO) : Reinforcement Learning from Human Feedback (RLHF)

has demonstrated effectiveness, as showcased by ChatGPT and Llama 2, but it’s a complex and

sensitive process, and also has some bad alignment properties. RLHF involves a three-step proce

dure, whereas DPO simplifies this to two steps. The paper titled “Direct Preference Optimization:

Your Language Model is Secretly a Reward Model” presents an algorithm that aligns language

models with human preferences without the need for explicit reward modeling and reinforcement

learning. DPO employs a straightforward classification objective, circumventing the need for an

intermediary reward model.

RLHF, the method it proposes to replace, traditionally involves three steps:

DPO retains the initial supervised fine-tuning step but replaces the subsequent two steps with a

single step of fine-tuning on preference data, by using a new clever loss. DPO effectively increases

https://arxiv.org/abs/2305.18290

Chapter 6: Specification Gaming 37

the likelihood of preferred actions while reducing the likelihood of undesired ones, with a single

loss:

Figure 25: DPO increases the probability of the preferred action ,𝑦𝑤, while decreasing the probability

of the dispreferred action ,𝑦𝑙,.

By eliminating the step of creating a reward model, DPO greatly simplifies the fine-tuning process

and has shown to perform very well.

This process can then be iterated. This involves creating a new preference dataset (ie, we ask a

question, and we sample the new AI two times, and then we label the text that we prefer between

the two, and then we apply the DPO loss) Then, this cycle is repeated to enhance the model.

An important aspect of DPO is that the reward is implicit: it aligns with preferences without the need

to construct a separate reward model. This approach addresses the challenge of specifying a utility

function and responds to criticisms such as those by Alex Turner, who argues that robust grading

(ie , robust reward modeling) is an unnecessarily complex and unnatural task that might be harder

than the entire AI alignment problem itself. Turner’s critique, found in “Inner and Outer Alignment

Decompose One Hard Problem Into Two Extremely Hard Problems,” suggests that finding a safe

and robust numerical objective for a highly intelligent agent to optimize directly is a formidable

challenge—one challenge that DPO could to bypass.

Expanding the Scope of the Paper with Various Adaptations

This paper offers a foundation that could be enhanced through various adaptations. For instance,

integrating its approach with the insights from Tomasz Korbak et al.‘s paper, “ Pretraining Language

Models with Human Preferences,” (Korbak et al., 2023) could augment its robustness. Further

more, the utilization of boolean preference data has its limitations. Providing feedback in natural

language, as shown to be more sample-efficient in the study “Training Language Models with

Language Feedback,” (Scheurer et al., 2022) could enhance the effectiveness of the process.

Remarkably, with just 100 samples of human-written feedback, this approach enabled the fine-tuning

of a GPT-3 model to achieve nearly human-level summarization capabilities.

Looking towards the future, a speculative process that could mitigate the specification gaming

would be to train the model much like a child, and that would actively inquire and learn from

human interactions. This approach would closely mirror child development, during which a child

is progressively more aligned and more capable. And just as in the development of children, it

would be crucial to ensure that at no point does the AI’s capabilities outpace its level of alignment,

maintaining a balance between ability and ethical comprehension throughout its developmental

journey.

https://arxiv.org/abs/2302.08582
https://arxiv.org/abs/2204.14146

Chapter 6: Specification Gaming 38

Acknowledgements

We would like to express our gratitude to Jeanne Salle, Oscar Heitmann, Ram Rachum, Nicolas

Guillard, and Camille Berger for their valuable feedback, discussions, and contributions to this

work.

	1. Introduction
	2. Reinforcement Learning
	2.1 Primer
	2.2 Core Loop
	2.3 Policies
	2.4 Reward

	3. Optimization
	3.1 Goodhart's Law

	4. Specification Gaming
	4.1 Reward Design
	4.2 Reward Shaping
	4.3 Reward Hacking
	4.4 Reward Tampering

	5. Learning from imitation
	5.1 Imitation Learning (IL)
	5.2 Behavioral Cloning (BC)
	5.3 Procedural Cloning (PC)
	5.4 Inverse Reinforcement Learning (IRL)
	5.5 Cooperative Inverse Reinforcement Learning (CIRL)
	5.6 The Goal Inference Problem

	6. Learning from feedback
	6.1 Reward Modeling
	6.2 Reinforcement Learning from Human Feedback (RLHF)
	6.3 Pretraining with Human Feedback (PHF)
	6.4 Reinforcement Learning from AI Feedback (RLAIF)
	6.5 Limitations

	Acknowledgements

