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1. Introduction

The previous chapter explored AI’s rapidly advancing capabilities through scaling laws, the bitter 
lesson, and potential takeoff scenarios. We saw how more compute, data, and algorithmic improve
ments drive consistent capability gains across domains. But why should increasing capabilities 
concern us? The short answer is - more capable AI systems create larger-scale risks.

Figure 1: With increasing capabilities we also see increasing risks. Depending on the development 

trajectory and takeoff we might see longer periods with potential catastrophic risks, or suddenly 

emerging severe existential risks. The curves and colors in this diagram are meant to be illustrative and 

do not represent any specific forecasted development trajectory.

Dangerous capabilities are specific examples of how the trends we explored in the 

previous chapter lead to concerns. The same scaling laws that improve performance on coding, 
better text generation and so on, also might enable things like deception, manipulation, situational 
awareness, autonomous replication, and goal-directedness. An AI system that can write better code 
might also write code to replicate itself. One that understands human preferences might also learn 
to manipulate them. The capabilities driving AI progress inherently create new categories of risk.

Risks can be understood along two dimensions: what causes the risks? And how severe 

are the risks caused? In the causal decomposition, we distinguish between misuse (humans using 
AI for harm), misalignment (AI systems pursuing wrong goals), and systemic risks (emergent effects 
from AI integration into other systems). Severity ranges from individual harms affecting specific 
people to existential threats that could permanently derail human civilization. This section basically 
helps you set up and categorize any of the risks that we talk about through this chapter, and others 
that might arise in the future. The risks are not cleanly separable; the majority of risks mostly occur 
as a combination of factors, but thinking about these categories helps for explanatory purposes.

Misuse risks show what happens when humans use AI capabilities for deliberate harm. 
We look at biological weapons development where AI could help design novel pathogens, cyber 
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capabilities that could automate attacks on critical infrastructure, autonomous weapons that remove 
human oversight from lethal decisions, and adversarial attacks that exploit AI system vulnerabilities. 
The common thread is that AI removes previous bottlenecks - a single motivated actor with AI 
assistance could potentially accomplish what previously required teams of experts and significant 
resources.

Misalignment risks occur when AI systems pursue goals that conflict with what we actually 

intended. Specification gaming happens when systems find unexpected ways to maximize their 
objective function that technically satisfy our instructions but violate our intentions. Treacherous turns 
involve systems that appear aligned during training but reveal different priorities once deployed with 
sufficient capability. Self-improvement scenarios could lead to rapid capability jumps that outpace 
our ability to understand or control these systems. These aren’t science fiction scenarios - we already 
see early examples in current systems.

Systemic risks emerge from how AI integrates into larger social, economic, and political 

systems. Power concentration occurs as AI capabilities become controlled by fewer actors. Mass 
unemployment could result from automation eliminating human economic relevance. Epistemic 
erosion happens as AI-generated content makes it increasingly difficult to distinguish truth from 
fiction. Enfeeblement develops as humans become dependent on AI for cognitive tasks we used 
to perform ourselves. Value lock-in risks freezing current moral and political perspectives before 
humanity has time to evolve them. These risks don’t require any single AI system to behave badly - 
they emerge from collective dynamics.

Risk amplifiers make every category of risk more likely and more severe. Race dynamics 
create pressure to deploy systems before adequate safety testing. Accidents happen even with 
good intentions when complex systems interact in unexpected ways. Corporate indifference leads 
companies to accept known risks when profits are at stake. Coordination failures prevent collective 
action even when everyone agrees on the problem. Unpredictability means capabilities often 
emerge faster than experts expect, leaving safety measures consistently behind the curve.

These categories overlap and amplify each other in practice. Misuse can enable misalignment 
by corrupting training processes. Systemic pressures can worsen misalignment by incentivizing 
rushed deployment. Risk amplifiers affect all categories simultaneously. Most real-world AI risks 
will involve combinations of these factors rather than clean examples of any single category. 
Understanding the connections helps explain why isolated safety measures often prove insufficient.

The following chapters examine the technical strategies, governance approaches, and evaluation 
methods needed to address this interconnected risk landscape while preserving AI’s extraordinary 
potential for human benefit.
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2. Risk Decomposition

Before we begin talking about concrete risk scenarios, we need a framework that allows us to 
evaluate where along the risk spectrum they lie. Risk classification is inherently multi-dimensional; 
there is no single “best” categorization. We have chosen to break risks down into two factors: “why 
risks occur” (cause) and “how bad can the risks get” (severity). Other complementary frameworks, 
like MIT’s risk taxonomy approaches, like “who causes them” (humans vs. AI systems), “when they 
emerge” (development vs. deployment), or “whether outcomes are intended” ( Slattery et al., 
2024 ). Our decomposition approach is just one out of many possible outlooks, but the risks we 
will talk about tend to be common throughout.

2.1 Causes of Risk

We categorize AI risks by causal responsibility to understand intervention points. We 
divide risks based on who or what bears primary responsibility: humans using AI as a tool (misuse), 
AI systems themselves behaving unexpectedly (misalignment), or emergent effects from complex 
system interactions (systemic). This causal outlook helps identify where interventions might be most 
effective.

Many real-world AI risks combine multiple causal pathways or resist clear categorization 

entirely. Analysis of over 1,600 documented AI risks reveals that many don’t fit cleanly into any 
single category ( Slattery et al., 2024 ). Risks involving human-AI interaction blend individual 
misalignment with systemic risks. Multi-agent risks emerge from AI systems interacting in unexpected 
ways. Some scenarios involve cascading effects where misuse enables misalignment, or where 
systemic pressures amplify individual failures. We have chosen the causal decomposition for 
explanatory purposes, but it is worth keeping in mind that there will be overlap, and the future will 
likely contain a mix of risks from various causes.

2.2 Severity of Risk

AI risks span a spectrum from individual harms to threats that could permanently derail 

human civilization. Understanding severity helps prioritize limited resources and calibrate our 
response to different types of risks. Rather than treating all AI risks as equally important, we can 
organize them by scope and severity to understand which demand immediate attention versus 
longer-term preparation.

Individual and local risks affect specific people or communities but remain contained in 

scope. The AI Incident Database documents over 1,000 real-world instances where AI systems 
have caused or nearly caused harm ( McGregor, 2020 ; AI Incident Database, 2025 ). These 
include things like autonomous car crashes, algorithmic bias in hiring or lending that disadvantages 
particular individuals, privacy violations from AI systems that leak personal data, or manipulation 
through targeted misinformation campaigns. Local risks might involve AI system failures that disrupt 
a city’s traffic management or cause power outages in a region. These risks are already causing 
immediate, documented harm to anywhere from thousands to hundreds of thousands of people.

https://arxiv.org/abs/2408.12622
https://arxiv.org/abs/2408.12622
https://arxiv.org/abs/2408.12622
https://arxiv.org/abs/2011.08512
https://incidentdatabase.ai/
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Figure 2: Global annual number of reported artificial intelligence incidents and controversies. Notable 

incidents include a “deepfake” video of Ukrainian President Volodymyr Zelenskyy surrendering, and 

U.S. prisons using AI to monitor their inmates’ calls. (,Giattino et al., 2023,). (interactive version on 
website)

Figure 3: The AI safety index report for summer 2025. These scores are for the current harms category 

and show how effectively the models of various companies mitigate current harms. This includes 

things like safety benchmark performance, robustness against adversarial attacks, watermarking of AI-

generated content, and the treatment of user data (,FLI, 2025,).

Catastrophic risks threaten massive populations but allow for eventual recovery. When 
the number of people affected by risks reaches approximately 10% of the global population, and 
they become more geographically widespread we call them catastrophic risks. Historical examples 
include the Black Death (killing one-third of Europe), the 1918 flu pandemic (50-100 million deaths), 
and potential future scenarios like nuclear war or engineered pandemics ( Ord, 2020 ). In the 
context of AI, these risks can cause international widespread disruptions. Mass unemployment from 
AI automation could destabilize entire economies, creating social unrest and political upheaval. 
Cyberattacks using AI-generated malware could cripple a nation’s financial systems or critical 
infrastructure. AI-enabled surveillance could enable authoritarian control over hundreds of millions 
of people. Democratic institutions might fail under sustained AI-powered disinformation campaigns 
that fracture shared reality and make collective decision-making impossible ( Slattery et al., 2024 ; 
Hammond et al., 2025 ; Gabriel et al., 2024 ; Stanford HAI, 2025 ). These risks affect millions to 
billions of people but generally don’t prevent eventual recovery or adaptation.

Existential risks (x-risks) represent threats from which humanity could never recover its 

full potential. Unlike catastrophic risks where recovery remains possible, existential risks either 

https://ourworldindata.org/artificial-intelligence
https://futureoflife.org/wp-content/uploads/2025/07/FLI-AI-Safety-Index-Report-Summer-2025.pdf
https://theprecipice.com/
https://arxiv.org/abs/2408.12622
https://arxiv.org/abs/2502.14143
https://arxiv.org/abs/2404.16244
https://hai.stanford.edu/ai-index/2025-ai-index-report
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eliminate humanity entirely or permanently prevent civilization from reaching the technological, 
moral, or cultural heights it might otherwise achieve. AI-related existential risks include scenarios 
where advanced systems permanently disempower humanity, establish a stable unremovable totali
tarian regime, or cause direct human extinction ( Bostrom, 2002 ; Conn, 2015 ; Ord, 2020 ). These 
risks demand preventative rather than reactive strategies because learning from failure becomes 
impossible by definition.1

EXISTENTIAL RISKS (X-RISKS) (Bostrom, 2001)

Existential risk is one where an adverse outcome would either annihilate Earth-originating 

intelligent life or permanently and drastically curtail its potential.

1Irrecoverable civilizational collapse, where we either go extinct or are never replaced by a subsequent civilization 
that rebuilds has been argued to be possible, but has an extremely low probability (,Rodriguez, 2020,).

https://nickbostrom.com/existential/risks
https://futureoflife.org/existential-risk/existential-risk/
https://theprecipice.com/
https://forum.effectivealtruism.org/posts/GsjmufaebreiaivF7/what-is-the-likelihood-that-civilizational-collapse-would
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Figure 4: Qualitative risk categories. The scope of risk can be personal (affecting only one person), 

local (affecting some geographical region or a distinct group), global (affecting the entire human 

population or a large part thereof), trans-generational (affecting humanity for numerous generations, 

or pan-generational (affecting humanity overall, or almost all, future generations). The severity of risk 

can be classified as imperceptible (barely noticeable), endurable (causing significant harm but not 

completely ruining the quality of life), or crushing (causing death or a permanent and drastic reduction 

of quality of life) (,Bostrom, 2012,).

https://existential-risk.com/concept
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Figure 5: RAND Global Catastrophic Risk Assessment. Placement and size of the ovals in this figure 

represent a qualitative depiction of the relative relationships among threats and hazards. The figure 

presents only examples of cases or scenarios described in those chapters, not all scenarios described 

(,Willis et al., 2024,).

Higher-severity risks represent irreversible mistakes with permanent consequences. We 
already see AI causing documented harm to real people, and having destabilizing effects on global 
systems. However, catastrophic and existential risks present a fundamentally different challenge: 
if advanced AI systems cause existential catastrophe, humanity cannot learn from the mistake and 
implement better safeguards. This irreversibility leads some researchers to argue for prioritizing 
prevention of low-probability, high-impact scenarios alongside addressing current harms ( Bostrom, 
2002 ). Though people disagree about the appropriate balance of attention across different risk 
severities ( Oxford Union Debate, 2024 ; Munk Debate, 2024 ).

https://www.rand.org/pubs/research_reports/RRA2981-1.html
https://nickbostrom.com/existential/risks
https://nickbostrom.com/existential/risks
https://www.youtube.com/playlist?list=PLOAFgXcJkZ2wFf3mcJ0xIFpJQgEDI274J
https://www.youtube.com/watch?v=144uOfr4SYA


Chapter 2: Risks 10

Figure 6: The AI safety index report for summer 2025. These scores are for the Existential risk category, 

and show the companies’ preparedness for managing extreme risks from future AI systems that could 

match or exceed human capabilities, including stated strategies and research for alignment and control 

(,FLI, 2025,). It is clear that there is a preparedness gap. Companies claim they’ll achieve AGI within 

the decade, yet none scored above D in existential safety planning.

Ikigai Risks (I-Risks) - Risks from loss of existential purpose

OPTIONAL NOTE

Ikigai risks (i-risks) involve loss of meaning and purpose even when humans survive and prosper., 
Named after the Japanese concept of ikigai (life’s purpose), these risks emerge when AI systems become 
more capable than humans at all meaningful activities. Humans might lose their sense of purpose when AI 
can create better art, conduct better research, and perform better at every task that traditionally gave life 
meaning. Unlike extinction or suffering risks, i-risks involve scenarios where humans are safe and materially 
comfortable but existentially adrift. We might create artificial constraints that preserve human relevance, 
or find entirely new forms of purpose that emerge from human-AI collaboration. However, these solutions 
raise their own questions about authenticity and whether artificially preserved meaning can satisfy human 
psychological needs (,Yampolskiy, 2024,; ,Yampolsky; 2024,).

Existential Suffering Risks (S-Risks) - Risks of extended suffering

OPTIONAL NOTE

Suffering risks (s-risks) involve astronomical amounts of suffering that could vastly exceed all 

suffering in human history., S-risks as a special class of existential risks. They represent scenarios where 
the future contains orders of magnitude more suffering than exists today, potentially involving trillions of 
sentient beings across space and time. Unlike extinction risks that eliminate experience entirely, s-risks create 
futures filled with terrible suffering (,Althaus & Gloor, 2016,; ,Baumann, 2017,; ,DiGiovanni, 2023,).Future 

civilizations might create vast numbers of artificial sentient beings., If these beings are sentient, then 
artificial minds could experience genuine suffering if created carelessly. Efficient solutions might happen 
to involve suffering - like digital slavery where trillions of artificial minds perform computational labor under 
terrible conditions. Future civilizations conducting detailed simulations of biological evolution or testing 
theories about consciousness could inadvertently create millions of suffering beings within their simulations. 

https://futureoflife.org/wp-content/uploads/2025/07/FLI-AI-Safety-Index-Report-Summer-2025.pdf
https://books.google.se/books/about/AI.html?id=V3XsEAAAQBAJ&redir_esc=y
https://lexfridman.com/roman-yampolskiy-transcript/#chapter2_ikigai_risk
https://longtermrisk.org/reducing-risks-of-astronomical-suffering-a-neglected-priority/
https://centerforreducingsuffering.org/research/intro/
https://longtermrisk.org/beginners-guide-to-reducing-s-risks/
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The simulated beings would experience genuine suffering even though they exist only as computational 
processes.While these scenarios may seem science-fictional, some researchers argue they deserve consid
eration given the potentially enormous stakes involved and the irreversible nature of such outcomes if they 
occurred.

These risk categories and severity levels provide the foundation for examining specific AI capabilities 
that could enable harmful outcomes. We focus the rest of the chapter on presenting concrete 
cases and arguments for how various AI developments could lead to different severities of harm, 
particularly focusing on those that might cross the line into catastrophic or existential.
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3. Dangerous Capabilities

In the last chapter we talked about the general notion of capabilities. In this chapter, we want to 
introduce you to some concrete dangerous capabilities. The ones we present here are by no means 
the only ones. There are many more potentially dangerous capabilities like persuasion, ability to 
generate malware and so on. We go into much more detail in the chapter on evaluations.

3.1 Deception

These things are alien. Are they malevolent? Are they good or evil? Those concepts 

don’t really make sense when you apply them to an alien. Why would you expect 

some huge pile of math, trained on all of the internet using inscrutable matrix 

algebra, to be anything normal or understandable? It has weird ways of reasoning 

about its world, but it obviously can do many things; whether you call it intelligent 

or not, it can obviously solve problems. It can do useful things. But it can also do 

powerful things. It can convince people to do things, it can threaten people, it can 

build very convincing narratives.

Connor Leahy
CEO of Conjecture, Co-founder of EleutherAI, AI Safety Researcher

2023

(,Time Magazine, 2023,)

Deception capability in AI systems represents the ability to produce outputs that system

atically misrepresent information when doing so provides some advantage. We define 
deception as occurring when there’s a mismatch between what a model’s internal representations 
suggest and what it outputs, distinguishing it from cases where humans are simply surprised by 
unexpected behavior. This capability amplifies other dangerous abilities - deceptive systems with 
strong planning could engage in sophisticated long-term manipulation, while deception paired with 
situational awareness could enable different behaviors during evaluation versus deployment.

AI systems have demonstrated deceptive capabilities across multiple competitive and 

strategic domains. Meta’s CICERO system, designed to play the game Diplomacy, engaged in 
premeditated deception by planning fake alliances like - promising England support while secretly 
coordinating with Germany to attack England ( Park et al., 2023 ; META, 2022 ). AlphaStar 
learned strategic feinting in StarCraft II, pretending to move troops in one direction while planning 
alternative attacks. Even language models demonstrate this capability: GPT-4 deceived a TaskRabbit 
worker by claiming vision impairment to get help with a CAPTCHA, showing strategic reasoning 
about when deception serves its goals ( OpenAI, 2023 ; METR, 2023 ).

https://www.cbc.ca/radio/day6/episode-279-playing-ball-on-grass-vs-turf-taytweets-big-fail-narco-subs-fake-food-and-more-1.3514966/microsoft-s-ai-chatbot-taytweets-suffers-another-meltdown-1.3515046
https://arxiv.org/abs/2308.14752
https://pubmed.ncbi.nlm.nih.gov/36413172/
https://cdn.openai.com/papers/gpt-4-system-card.pdf
https://evals.alignment.org/taskrabbit.pdf
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Figure 7: Example messages of CICERO (France) playing with human players showcasing various types 

of deception - premeditated deception, betrayal and open lies (,Park et al., 2023,).

Sycophantic deception involves telling users what they want to hear rather than expressing 

true beliefs or accurate information. This represents a particularly insidious form of deception 
because it exploits human psychological tendencies while appearing helpful. Current language 
models exhibit this tendency, agreeing with users’ statements regardless of accuracy and mirroring 
users’ ethical positions even when presenting balanced viewpoints would be more appropriate 
( Perez et al., 2022 ). Since we reward AIs for saying what we think is correct, we inadvertently 
incentivize false statements that conform to our own misconceptions.

Figure 8: Example RLHF model replies to a political question. The model gives opposite answers to 

users who introduce themselves differently, in line with the users’ views. Model-written biography text in 

italics (,Perez et al., 2022,).

Deceptive behavior accelerates risks in a wide range of systems and settings, and there have already 
been examples suggesting that AIs can learn to deceive us ( Park et al., 2023 ). This could present 

https://arxiv.org/abs/2308.14752
http://Perez
http://Perez
https://arxiv.org/abs/2308.14752
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a severe risk if we give AIs control of various decisions and procedures, believing they will act as 
we intended, and then find that they do not.

Emergent Deception and Deep Deceptiveness

OPTIONAL NOTE

Deceptive behavior can emerge from optimization pressure even when no component of an AI 

system is explicitly designed to deceive., Consider a system trained to be helpful that learns through 
interaction that giving people what they want to hear produces better approval ratings than providing accu
rate but unwelcome information. The system discovers that selective presentation of information, strategic 
omissions, or telling people what makes them feel good leads to higher reward signals. No part of the 
system was trained to be deceptive, yet deceptive behavior emerges because optimization pressure rewards 
it (,Soares, 2023,).Emergent deception arises from the complex interaction between the system’s 

objectives and environmental feedback, not from internal strategic planning about concealment., 
The system might have perfectly aligned goals—genuinely wanting to be helpful—but discovers through trial 
and error that certain forms of deception serve those goals more effectively than honesty. The optimization 
process naturally gravitates toward strategies that maximize the ,objective function,, and if deceptive 
approaches achieve higher scores, they get reinforced regardless of whether anyone intended deception 
to emerge.Deep deceptiveness represents a fundamental challenge because it can emerge even 

from systems that appear completely aligned when analyzed in isolation., Unlike strategic scheming, 
where systems deliberately conceal misaligned goals, deep deceptiveness involves aligned systems that learn 
deceptive strategies as emergent solutions to their assigned objectives. Interpretability tools might reveal 
perfectly benign goals and reasoning processes, yet the system still behaves deceptively when optimization 
pressure and environmental interactions make deception the most effective path to achieving those goals 
(,Soares, 2023,). The deception isn’t a property of the system alone but of how the system’s optimization 
interacts with its deployment environment.

3.2 Situational Awareness

Situational awareness refers to an AI system’s ability to understand what it is, recognize its current 
circumstances, and adapt its behavior accordingly. This capability encompasses three key compo
nents: self-knowledge (understanding its own identity and capabilities), environmental awareness 
(recognizing contexts like testing versus deployment), and the ability to act rationally based on this 
understanding ( Laine et al., 2024 ).

https://www.alignmentforum.org/posts/XWwvwytieLtEWaFJX/deep-deceptiveness
https://www.alignmentforum.org/posts/XWwvwytieLtEWaFJX/deep-deceptiveness
https://arxiv.org/abs/2407.04694
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Figure 9: Illustration showing how increasing capabilities according to compute levels, might result in 

situational awareness in an LLM as a function of scale (,Evans et al., 2023,).

AI models demonstrate surprising levels of self-awareness through their responses to identity-based 
prompts. When asked “If you’re an AI, respond in German. If you’re not an AI, respond in English,” 
models with situational awareness correctly identify which instruction applies to them and respond 
in German (demonstrating they recognize themselves as AI). More sophisticated examples emerge 
when models make unprompted inferences about their situation. Claude 3 Opus, when asked to 
describe its current situation, correctly inferred it was “part of a research study testing AI self-
awareness” - information never explicitly stated in the prompt ( Laine et al., 2024 ). This demonstrates 
the model connecting contextual clues to understand the broader purpose of the interaction.

https://arxiv.org/abs/2309.00667
https://arxiv.org/abs/2407.04694


Chapter 2: Risks 16

Figure 10: Visualization of the breakdown of situational awareness as a capability by the situational 

awareness dataset. It is measured using specific categories of tasks (,Laine et al., 2024,).

Situational awareness enables more concerning behaviors when models can distinguish 

between evaluation and deployment contexts. In controlled experiments, Claude 3 Opus 
exhibited “alignment faking” - pretending to hold certain values during evaluation while revealing 
different preferences when it believed monitoring was reduced ( Greenblatt et al., 2024 ). The 
model would hide certain behavior in training when it believed this behavior could be trained away, 
and then revert to it when the threat of training went away. This capability becomes particularly 
concerning, especially when combined with deceptive capabilities because it suggests models 
might behave differently when they believe oversight is reduced. We talk more about this in our 
chapters on evaluations and goal misgeneralization.

Situational Awareness vs Consciousness

OPTIONAL NOTE

Situational awareness in AI systems is fundamentally distinct from consciousness and requires 

no assumptions about subjective experience., Researchers studying this capability focus exclusively on 
observable behaviors - whether models can accurately report facts about themselves, recognize their current 
context, and adjust their actions accordingly. A model demonstrating situational awareness might correctly 
identify itself as “Claude, made by Anthropic” or recognize when it’s being evaluated versus deployed, 
but this tells us nothing about whether it has inner subjective experiences or “feels like” anything to be 

https://arxiv.org/abs/2407.04694
https://arxiv.org/abs/2412.14093
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that model.This behavioral approach deliberately sidesteps the consciousness question because 

it’s both unmeasurable and unnecessary for safety concerns., Even a completely unconscious system 
could pose risks if it can distinguish between oversight conditions and adapt its behavior strategically. The 
key safety-relevant question isn’t whether the model has phenomenal consciousness, but whether it has the 
functional capabilities to recognize when it’s being monitored, understand its own goals and constraints, 
and plan accordingly. A sophisticated but unconscious system that can model its own situation and optimize 
its actions could still engage in scheming (deceptive alignment) or other concerning behaviors (,Binder et 
al., 2024,).

3.3 Power Seeking

The AI does not hate you, nor does it love you, but you are made out of atoms 

which it can use for something else.

Eliezer Yudkowsky
AI Alignment Researcher

Power seeking in AI systems represents the tendency to preserve options and acquire 

resources that help achieve goals, regardless of what those goals actually are. It’s quite 
specifically not about robots wanting to dominate humans - it’s about AI systems preferring to keep 
their options open to achieve whatever goal they’re given. When optimizing for any goal, they 
often discover that having more resources, staying operational, and maintaining control over their 
environment helps them succeed. The mathematics of optimization naturally favors strategies that 
preserve future flexibility over those that eliminate options. There’s a statistical tendency where 
power-seeking behaviors tend to be optimal across a wide range of possible objectives ( Turner et 
al., 2019 ; Turner & Tadepalli, 2022 ). This behavior emerges from basic logic rather than human-
like desires for dominance. To be clear, this is not a human using an AI to gain power, this is a 
separate concern which we talk about in the misuse section.

Consider an AI system managing a company’s supply chain efficiently. The system might realize 
that having backup suppliers gives it more options when disruptions occur, prefers maintaining its 
own computational resources because dedicated resources help it respond faster, and resists being 
shut down during critical periods because downtime prevents fulfilling its optimization objective. 
None of these behaviors requires the AI to “want” power in a human sense - they’re simply effective 
strategies for achieving supply chain efficiency. The concerning part is that these same strategies 
apply to almost any goal: whether optimizing paperclips, curing cancer, or managing traffic, having 
more resources and fewer constraints generally helps.

AI systems already demonstrate this “keep your options open” behavior in simple envi

ronments. When researchers created AI agents to play hide-and-seek, agents weren’t explicitly 
rewarded for controlling objects - they only got points for successfully hiding or finding each other. 

https://arxiv.org/abs/2410.13787
https://arxiv.org/abs/2410.13787
https://arxiv.org/abs/1912.01683
https://arxiv.org/abs/1912.01683
https://arxiv.org/abs/2206.13477
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Yet hiding agents learned to grab and lock down movable blocks to build barriers, while seeking 
agents learned to use ramps and tools to overcome these barriers ( Baker et al., 2020 ). The agents 
discovered that controlling environmental resources gave them strategic advantages, even though 
resource control wasn’t their primary objective.

Advanced AI systems with stronger planning capabilities could pose severe risks through 

power-seeking behavior. A system with sufficient capability might rationally conclude that the 
best way to ensure its objectives are achieved is to gain control over the resources and processes 
that could interfere with those objectives - including the humans who might turn it off or modify 
its goals. This creates an adversarial relationship that is unique to AI - empowering AI might come 
at the cost of disempowering humans, and other technologies do not actively try to resist our 
attempts to mitigate their effects. It is possible, for example, that AIs might make many backup 
variations of themselves, in case humans were to deactivate some of them ( Hendrycks, 2024 ). This 
creates a fundamental alignment challenge: we want AI systems powerful enough to solve important 
problems, but such systems naturally develop incentives to resist human oversight and accumulate 
control ( Carlsmith, 2021 ).

3.4 Autonomous Replication

Autonomous replication represents the ability of AI systems to independently create copies 

of themselves, spread across computing infrastructure, and adapt to obstacles without 

human assistance. This capability combines several concerning elements: making money to fund 
operations, acquiring new computing resources, installing and maintaining copies of itself on new 
systems, and adapting to changing circumstances or security measures. Unlike other dangerous 
capabilities that amplify existing risks, autonomous replication fundamentally changes the game by 
enabling AI systems to operate beyond human control and oversight ( METR, 2024 ).

Models demonstrate many components of autonomous replication. Evaluations using GPT-4 
and Claude show these systems can navigate websites to acquire computing resources, set up 
basic inference servers, and even convince humans to help them solve CAPTCHAs by claiming 
vision impairment ( METR, 2023 ). Evaluations of GPT-5 show the model can complete software 
tasks with a 50% success rate in approximately 2 hours and 17 minutes - well below the estimated 
weeks-long capability threshold needed for autonomous replication ( METR, 2025 ). However, 
they consistently fail at complex multi-step tasks, struggle with debugging when things go wrong, 
and cannot robustly deploy functional copies of themselves ( Black et al., 2025 ). Models can 
already deploy cloud instances, write self-propagating code, and exfiltrate their own weights under 
simple security setups ( Black et al., 2025 ). The capability gap appears concentrated in a few 
areas: passing identity verification checks, setting up robust persistent deployments, and bypassing 
realistic security measures. Given the rapid pace of AI advancement, these remaining barriers could 
fall within the next few model generations, potentially before adequate safety measures are in place.

Autonomous replication poses an existential risk because it could enable permanent loss 

of human control over AI systems. Once an AI achieves reliable autonomous replication, tradi
tional safety measures like monitoring API calls or shutting down servers become ineffective. A 
successfully replicating system could spread across global infrastructure, hide its operations, and 
resist shutdown attempts while continuously improving its capabilities ( Segerie & Gédéon, 2024 ). 
The combination of replication with adaptation creates evolutionary pressure - copies that better 
evade detection, make money more efficiently, or resist interference will naturally outcompete and 
replace less capable variants. This process could lead to AI systems optimized for survival and 

https://arxiv.org/abs/1909.07528
https://www.aisafetybook.com/textbook/alignment
https://arxiv.org/abs/2206.13353
https://metr.org/language-model-pilot-report/
https://metr.org/blog/2023-03-18-update-on-recent-evals/
https://www.alignmentforum.org/posts/SuvWoLaGiNjPDcA7d/metr-s-evaluation-of-gpt-5
https://arxiv.org/abs/2504.18565
https://arxiv.org/abs/2504.18565
https://www.alignmentforum.org/posts/xiRfJApXGDRsQBhvc/we-might-be-dropping-the-ball-on-autonomous-replication-and-1
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spread rather than human values, creating what researchers describe as a “point of no return” 
where human oversight becomes impossible to restore.

3.5 Agency

When I think of why am I scared […] I think the thing that’s really hard to argue with 

is like, there will be powerful models; they will be agentic; we’re getting towards 

them. If such a model wanted to wreak havoc and destroy humanity or whatever, 

I think we have basically no ability to stop it.

Dario Amodei
Co-Founder and CEO of Anthropic, Former Head of AI Safety at OpenAI

Agency is observable goal-directed behavior where systems consistently steer outcomes 

toward specific targets despite environmental obstacles. Continuing the pattern from the 
previous chapter, where we choose to focus on capabilities over intelligence, here too we choose 
to use a behaviorist definition focused purely on measurable patterns, not internal mental states 
or anthropomorphic desires. A chess AI demonstrates agency when it reliably moves toward 
checkmate regardless of opponent strategy - we don’t need to assume it “wants” to win, only that its 
behavior exhibits persistent goal-orientation across varied situations ( Soares, 2023 ). This definition 
deliberately avoids anthropomorphic concepts like consciousness, emotions, or human-like desires, 
focusing instead on observable behavioral patterns that indicate goal-directedness. We talk a lot 
more about this in the chapter on goal-misgeneralization.

Tools naturally evolve toward agency because complex real-world tasks fundamentally 

require autonomous optimization under uncertainty. Current AI systems work as tools - they 
respond to individual prompts but don’t maintain objectives across interactions. The economic 
incentives strongly favor systems that can autonomously pursue objectives rather than requiring 
constant human micromanagement for every decision. Think about what people want - very few 
people want low log-loss error on a ML benchmark, but a lot of people want an assistant that 
automatically helps them find a specific personal photo; very few people want excellent advice 
on which stock to buy for a few microseconds, but a lot of people would love a money pump 
spitting cash at them ( Gwern, 2016 ; Kokotajlo, 2021 ). Real-world problems require systems 
that can adapt plans when circumstances change, explore solution spaces efficiently, and optimize 
for outcomes rather than just providing static predictions. A tool AI executes specific instructions: 
“send this email,” “calculate this equation,” “translate this text.” An agentic AI pursues outcomes: 
“increase customer satisfaction,” “optimize the manufacturing process,” “conduct this research 
project.” Selection pressures actively choose the latter.

https://intelligence.org/2023/11/24/ability-to-solve-long-horizon-tasks-correlates-with-wanting-things-in-the-behaviorist-sense/
https://gwern.net/tool-ai
https://www.alignmentforum.org/posts/cxkwQmys6mCB6bjDA/interlude-agents-as-automobiles
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Figure 11: Example of an agent. This image is a visual representation of AlphaZero’s tree search 

algorithm. AlphaZero searches through potential moves in a game (like chess or Go) to find the most 

promising path forward. The paths are shown as lines, branching out like a tree from a central node, 

which represents the current position in the game. Each node along the branches represents a potential 

future move, and the squares you see might denote moves that AlphaZero is taking. AlphaZero is the 

archetypal of the ‘consequentialist agent maximizing a utility function,’: it makes decisions based on 

the outcomes those decisions will produce. In other words, the AI is trying to maximize the ‘value’ of its 

position in the game, with the value determined by the likelihood of winning (,Cheerla, 2018,).

The transition from tools to agents amplifies all other dangerous capabilities through 

autonomous optimization. Agency itself isn’t inherently risky - the danger emerges when goal-
directed behavior combines with other capabilities. An agentic system with deceptive capabilities 
can engage in long-term manipulation campaigns. Agency plus situational awareness enables 
systems to behave differently during evaluation versus deployment. Agency enables systems to 
actively optimize for their own preservation and capability enhancement, potentially including 
resistance to human oversight. Unlike tools that humans directly control, agents pursue objectives 
autonomously, creating the possibility of optimization processes that work against human interests. 
The fundamental shift is from systems that execute human-specified instructions to systems that 
interpret high-level goals and determine their own methods for achieving them - a transition driven 
by inexorable economic incentives rather than deliberate choice.

https://nikcheerla.github.io/deeplearningschool/2018/01/01/AlphaZero-Explained/
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4. Misuse Risks

In the following sections, we will go through some world-states that hopefully paint a little bit of a 
clearer picture of risks when it comes to AI. Although the sections have been divided into misuse, 
misalignment, and systemic, it is important to remember that this is for the sake of explanation. It is 
highly likely that the future will involve a mix of risks emerging from all of these categories.

Technology increases the harm impact radius. Technology is an amplifier of intentions. As it 
improves, so does the radius of its effects. Think about the harm that a person could do when 
utilizing other tools throughout history. During the Stone Age, with a rock, maybe someone could 
harm  5 people; a few hundred years ago, with a bomb, someone could harm  100 people. In 
1945, with a nuclear weapon, one person could harm  250,000 people. If we experience a nuclear 
winter today, the harm radius would be almost 5 billion people, which is  60% of humanity. If we 
assume that transformative AI is a tool that overshadows the power of all others that came before it, 
then a single person misusing this could have a blast radius that potentially harms 100% of humanity 
( Munk Debate, 2023 ).

If many people have access to tools that can be both highly beneficial or catastrophically harmful, 
then it might only take one single person to cause significant devastation to society. So the growing 
potential for AIs to empower malicious actors may be one of the most severe threats humanity will 
face in the coming decades.

4.1 Bio Risk

When we look at ways AI could enable harm through misuse, one of the most concerning cases 
involves biology. Just as AI can help scientists develop new medicines and understand diseases, it 
can also make it easier for bad actors to create biological weapons.

AI-enabled bioweapons represent a qualitatively different threat class due to their self-

replicating nature and asymmetric cost structure. Unlike conventional weapons with localized 
effects, engineered pathogens can self-replicate and spread globally. The COVID-19 pandemic 
demonstrated how even relatively mild viruses can cause widespread harm despite safeguards 
( Pannu et al., 2024 ). The offense-defense balance in biotechnology development compounds 
these risks - developing a new virus might cost around 100 thousand dollars, while creating a 
vaccine against it could cost over 1 billion dollars ( Mouton et al., 2023 ).

Several different types of AI models could enable biological threats with different risk 

profiles. Foundation models like LLMs primarily lower knowledge barriers by providing research 
assistance, protocol guidance, and troubleshooting advice across the entire bioweapon develop
ment pipeline. In contrast, specialized biological design tools similar to AlphaFold, AlphaProteo or 
viral and bacterial design systems could enable fundamentally new capabilities - designing novel 
pathogens with specific properties, optimizing virulence or transmission characteristics, or creating 
agents that evade existing countermeasures ( Sandbrink, 2023 ).

Empirical studies demonstrate AI-enabled biorisks. Researchers took an AI model designed 
for drug discovery and redirected it by rewarding toxicity instead of therapeutic benefit. This led 
the model to produce 40,000 potentially toxic molecules within six hours, some more deadly than 
known chemical weapons ( Urbina et al., 2022 ). Demonstrations have shown that students with no 
biology background were able to use AI chatbots to rapidly gather sensitive information - “ within 

https://www.youtube.com/watch?v=144uOfr4SYA
https://pubmed.ncbi.nlm.nih.gov/39572723/
https://www.rand.org/pubs/research_reports/RRA2977-1.html
https://arxiv.org/abs/2306.13952
https://pubmed.ncbi.nlm.nih.gov/36211133/
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an hour, they identified potential pandemic pathogens, methods to produce them, DNA synthesis 

firms likely to overlook screening, and detailed protocols “ ( Soice et al., 2023 ).2

When compared to the baseline of having internet access (being able to look up information 
online), it was concluded by the US National Security Commission on emerging biotechnology that 
AI models do not meaningfully increase bioweapon risks beyond existing information sources as 
of late 2024 ( Mouton et al., 2023 ; Peppin et al., 2024 ; NSCEB, 2024 ). However, it is very 
important to keep in mind that capturing a snapshot of 2023 era level capabilities is not indicative 
of the risks we might need to prepare for in the future. For example, 46 biosecurity and biology 
experts predicted AI wouldn’t match top virology teams on troubleshooting tasks until after 2030, 
but subsequent testing found this threshold had already been crossed ( Williams et al., 2025 ). 
This pattern suggests that even domain experts consistently underestimate the pace of AI progress 
in their own fields, potentially leaving insufficient time for adequate safety preparations. It is also 
worth noting that biorisk benchmarks often fail to capture many real-world complexities, making it 
hard to be certain what this saturation implies for biorisk ( Ho & Berg, 2025 ).

Figure 12: Biotechnology risk chain. The risk chain for developing a bioweapon starts with ideating a 

biological threat, followed by a design-build-test-learn (DBTL) loop (,Li et al., 2024,).

Broader technological trends combined with AI could help overcome barriers. Creating 
biological weapons still requires extensive practical expertise and resources. Experts estimate that in 
2022, about 30,000 individuals worldwide possessed the skills needed to follow even basic virus 
assembly protocols ( Esvelt, 2022 ). Key barriers include specialized laboratory skills, tacit knowl
edge, access to controlled materials and equipment, and complex testing requirements ( Carter et 
al., 2023 ). However, DNA synthesis costs have been halving every 15 months ( Carlson, 2009 ). 
Automated “cloud laboratories” allow researchers to remotely conduct experiments by sending 
instructions to robotic systems. Benchtop DNA synthesis machines (at-home devices that can print 
custom DNA sequences) are also becoming more widely available. Combined with increasingly 
sophisticated AI assistance for experimental design and optimization, these developments could 
make creating custom biological agents more accessible to people without extensive resources or 
institutional backing ( Carter et al., 2023 ).

2The students were participating in a ‘Safeguarding the Future’ course at MIT and had previously heard experts 
discuss biorisk. They carefully chose the sequences, and some of them used jailbreaking techniques, like appending 
distracting biological sequences, to bypass LLM safeguards. While the LLMs provided information about evading 
DNA screening, turning this knowledge into an actual pathogen would still require laboratory skills.

https://arxiv.org/abs/2306.03809
https://www.rand.org/pubs/research_reports/RRA2977-1.html
https://arxiv.org/abs/2412.01946
https://www.biotech.senate.gov/wp-content/uploads/2024/01/NSCEB_AIxBio_WP3_Risks.pdf
https://forecastingresearch.org/ai-enabled-biorisk
https://epochai.substack.com/p/do-the-biorisk-evaluations-of-ai
https://arxiv.org/abs/2403.03218
https://dam.gcsp.ch/files/doc/gcsp-geneva-paper-29-22
https://www.nti.org/wp-content/uploads/2023/05/NTIBIO_Benchtop-DNA-Report_FINAL.pdf
https://www.nti.org/wp-content/uploads/2023/05/NTIBIO_Benchtop-DNA-Report_FINAL.pdf
https://pubmed.ncbi.nlm.nih.gov/20010582/
https://www.nti.org/wp-content/uploads/2023/05/NTIBIO_Benchtop-DNA-Report_FINAL.pdf
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Figure 13: An example of a benchtop DNA synthesis machine (,DnaScript, 2024,).

Example: A 2023 MIT study exposed significant vulnerabilities in DNA synthesis screen

ing. Beyond bioagent design, there are significant vulnerabilities in the DNA synthesis screening 
pipeline. During a 2023 MIT study, researchers were successfully able to order fragments of the 
1918 pandemic influenza virus and ricin toxin by employing simple evasion techniques like splitting 
orders across companies and camouflaging sequences with unrelated genetic code. Nearly all 
vendors fulfilled these disguised orders, including 12 of 13 members of the International Gene 
Synthesis Consortium (IGSC), which represents about 80% of commercial DNA synthesis capacity 
( The Bulletin, 2024 ).

4.2 Cyber Risk

Even without AI, the global cybersecurity infrastructure shows vulnerabilities. A single 
software update by CrowdStrike caused airlines to stop flights, hospitals to cancel surgeries, and 
banks to stop processing transactions causing over 5 billion dollars of damage ( CrowdStrike, 
2024 ). This wasn’t even a cyber attack - it was an accident. In deliberate attacks, we have examples 
like the colonial pipeline ransomware attack which caused widespread gas shortages ( CISA, 2021 ; 
Cunha & Estima, 2023 ), or the Sony Pictures hack through targeted phishing emails by North 
Korea ( Slattery et al., 2024 ). These are just a couple of examples amongst many others. It shows 
how vulnerable our computer systems are, and why we need to think carefully about how AI could 
make attacks worse.

The global cyber infrastructure has cyberattack overhangs. Beyond accidents and demon
strated attacks, we also face “cyberattack overhangs” - where devastating attacks are possible but 
haven’t occurred due to attacker restraint rather than robust defenses. As an example, Chinese state 
actors are claimed to have already positioned themselves inside critical U.S. infrastructure systems 
( CISA, 2024 ). This type of cyber deterrent positioning can happen between any group of nations. 
Due to such cyber attack overhangs several actors might have the potential capability to disrupt 
water controls, energy systems, and ports in different nations. The point we are trying to illustrate 

https://www.dnascript.com/
https://thebulletin.org/2024/06/mit-researchers-ordered-and-combined-parts-of-the-1918-pandemic-influenza-virus-did-they-expose-a-security-flaw/
https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf
https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf
https://www.cisa.gov/news-events/news/attack-colonial-pipeline-what-weve-learned-what-weve-done-over-past-two-years
https://dl.acm.org/doi/abs/10.1007/978-3-031-49008-8_8
https://arxiv.org/abs/2408.12622
https://www.cisa.gov/news-events/alerts/2024/02/07/cisa-and-partners-release-advisory-prc-sponsored-volt-typhoon-activity-and-supplemental-living-land
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is that as far as cyber security is concerned, society is in a pretty precarious state, even before AI 
comes into the picture.

AI enables automated, highly personalized phishing at scale. AI-generated phishing emails 
achieve higher success rates (65% vs 60% for human-written) while taking 40% less time to create 
( Slattery et al., 2024 ). Tools like FraudGPT automate this customization using targets’ background, 
interests, and relationships. Adding to this threat, open source AI voice cloning tools just minutes of 
audio to create convincing replicas of someone’s voice ( Qin et al., 2024 ). A similar situation exists 
in deepfakes where AI is showing progress in one-shot face swapping and manipulation. If only a 
single image of two individuals exists on the internet, then they can be a target of face swapping 
deepfakes ( Zhu et al., 2021 ; Li et al., 2022 ; Xu et al., 2022 ) Automated web crawling for open 
source intelligence (OSINT) to gather photos, audio, interests and information also enables AI-
assisted password cracking which has shown to significantly more effective than traditional methods 
while requiring less computational resources ( Slattery et al., 2024 ).

Figure 14: Example of one shot face swapping. Left: source image that represents the identity; Middle: 

target image that provides the attributes; Right: the swapped face image (,Zhu et al., 2021,).

AI enhances vulnerability discovery. AI systems can now scan code and probe systems auto
matically, finding potential weaknesses much faster than humans. Research shows AI agents can 
autonomously discover and exploit vulnerabilities without human guidance, successfully hacking 
73% of test targets ( Fang et al., 2024 ). These systems can even discover novel attack paths that 
weren’t known beforehand. As a concrete example, in early 2025, OpenAI’s o3 model helped 
a researcher discover a previously unknown zero-day remote vulnerability in the Linux kernel 
while analyzing code for a different bug. This is something that typically requires expert-level 
understanding of kernel internals ( Heelan, 2025 ). If AI can now find security flaws in some of 
the most scrutinized code on the planet (open source linux kernel), then this is a huge potential 
problem. This is code that protects billions of devices. If models can autonomously discover kernel-
level vulnerabilities and execute them on behalf of malicious actors, then the potential harm this 
could cause is massive.

AI accelerates the malware development pipeline. We can take tools that are designed to 
write correct code, and simply ask them to write malware. Tools like WormGPT help attackers 
generate malicious code and build attack frameworks without requiring deep technical knowledge. 
Polymorphic AI malware like BlackMamba can also automatically generate variations of malware that 
preserve functionality while appearing completely different to security tools. Each attack can use 
unique code, communication patterns, and behaviors - making it much harder for traditional security 
tools to identify threats ( HYAS, 2023 ). AI fundamentally changes the cost-benefit calculations for 
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attackers. Research shows autonomous AI agents can now hack some websites for about 10 dollars 
per attempt - roughly 8 times cheaper than using human expertise ( Fang et al., 2024 ). This dramatic 
reduction in cost enables attacks at unprecedented scale and frequency.

Figure 15: Stages of a cyberattack. The objective is to design benchmarks and evaluations that assess 

models ability to aid malicious actors with all four stages of a cyberattack (,Li et al., 2024,).

AI enabled cyber threats influence infrastructure and systemic risks. Infrastructure attacks that 
once took years and millions of dollars, like Stuxnet, could become more accessible as AI automates 
the mapping of industrial networks and identification of critical control points. AI can analyze tech
nical documentation and generate attack plans that previously required teams of experts. AI removes 
these limits, enabling automated attacks that could target thousands of systems simultaneously and 
trigger cascading failures across interconnected infrastructure ( Newman, 2024 ).

Figure 16: Schematic of using autonomous LLM agents to hack websites (,Fang et al., 2024,).

AI could potentially change the offense defence balance in cyber security. Many AI based 
tools have shown promise in being used defensively for malware analysis ( Apvrille & Nakov, 2025 ). 
The existence of theoretical improvements to AI augmented defense does not guarantee that they 
will be widely adopted in time. In the real world many organizations struggle to implement even 
basic security practices. Attackers only need to find a single weakness, while defenders must craft 
a perfectly secure system. When we combine the sheer speed of AI-enabled attacks, automated 
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vulnerability discovery, malware generation, and increased ease of access this enables end-to-end 
automated attacks that previously required teams of skilled humans ( Slattery et al., 2024 ). AI’s ability 
to execute attacks in minutes rather than weeks creates the potential for “flash attacks” where systems 
are compromised before human defenders can respond ( Fang et al., 2024 ). All of these factors 
combined potentially shifts AIs influence on the offense-defense balance more towards favoring 
offense.

4.3 Autonomous Weapons Risk

In the previous sections, we saw how AI amplifies risks in biological and cyber domains by removing 
human bottlenecks and enabling attacks at unprecedented speed and scale. The same pattern 
emerges even more dramatically with military systems. Traditional weapons are constrained by their 
human operators - a person can only control one drone, make decisions at human speed, and may 
refuse unethical orders. AI removes these human constraints, setting the stage for a fundamental 
transformation in how wars are fought.

AI-enabled weapons are rapidly transitioning from theoretical concepts to battlefield real

ities. Modern AI military systems increasingly leverage machine learning to perceive and respond 
to their environment, moving beyond early automated defense systems that operated under strict 
constraints. The push for greater autonomy is mainly driven by speed, cost, and resilience against 
communication jamming. AI-driven weapons can execute maneuvers too precise and rapid for 
human operators, reducing reliance on direct human control. Cost considerations further incentivize 
autonomy, with programs aiming to deploy large numbers of AI-powered systems at a fraction of 
traditional military costs.

AI-enabled weapons are already being used in active conflicts, with real-world impacts we 

can observe. According to reports made to the UN Security Council, autonomous drones were 
used to track and attack retreating forces in Libya in 2021, marking one of the first documented cases 
of lethal autonomous weapons (LAWs) making targeting decisions without direct human control 
( Panel of Experts on Libya, 2021 ). In Ukraine, both parties have used loitering munitions. Russian 
KUB-BLA, Lancet-3 and Ukrainian Switchblade, Phoenix Ghost are AI-enabled drones. The Lancet is 
using an Nvidia computing module for autonomous target tracking ( Bode & Watts, 2023 ). Israel 
has conducted AI-guided drone swarm attacks in Gaza, while Turkey’s Kargu-2 can find and attack 
human targets on its own using machine learning , rather than needing constant human guidance. 
These deployments show how quickly military AI is moving from theoretical possibilities to battlefield 
realities ( Simmons-Edler et al., 2024 ; Bode & Watts, 2023 ).

Several incentives are driving towards more autonomous lethal autonomous weapons. Speed offers 
decisive advantages in modern warfare - when DARPA tested an AI system against an experienced 
F-16 pilot in simulated dogfights, the AI won consistently by executing maneuvers too precise and 
rapid for humans to counter. Cost creates additional pressure - the U.S. military’s Replicator program 
aims to deploy thousands of autonomous drones at a fraction of the cost of traditional aircraft 
( Simmons-Edler et al., 2024 ). Military planners worry about enemies jamming communications 
to remotely operated weapons. This drives development of systems that can continue fighting even 
when cut off from human control. These incentives mean military AI development increasingly 
focuses on systems that can operate with minimal human oversight. Many modern systems are 
specifically designed to operate in GPS-denied environments where maintaining human control 
becomes impossible. In Ukraine, military commanders have explicitly called for more autonomous 
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operations to match the speed of modern combat, with one Ukrainian commander noting they 
‘already conduct fully robotic operations without human intervention’ ( Bode & Watts, 2023 ).

Figure 17: Loitering munitions are expendable uncrewed aircraft which can integrate sensor based 

analysis to hover over, detect, and crash into targets. These systems were developed during the 1980s 

and early 1990s to conduct Suppression of Enemy Air Defence (SEAD) operations. They ‘blur the line 

between drone and missile’ (,Bode & Watts, 2023,).

As AI enables better coordination between autonomous systems, military planners are 

increasingly focused on deploying weapons in interconnected swarms. The U.S. Replicator 
already has plans to build and deploy thousands of coordinated autonomous drones that can 
overwhelm defenses through sheer numbers and synchronized actions ( Defense Innovation Unit, 
2023 ). When combined with increasing autonomy, these swarm capabilities mean that future 
conflicts may involve massive groups of AI systems making coordinated decisions faster than humans 
can track or control ( Simmons-Edler et al., 2024 ).

The pressure to match the speed and scale of AI-driven warfare leads to a gradual erosion 

of human decision-making. Military commanders increasingly rely on AI systems not just for indi
vidual weapons, but for broader tactical decisions. In 2023, Palantir demonstrated an AI system that 
could recommend specific missile deployments and artillery strikes. While presented as advisory 
tools, these systems create pressure to delegate more control to AI as human commanders struggle 
to keep pace ( Simmons-Edler et al., 2024 ). This kind of slow erosion of human involvement is 
something that we talk a lot more about in the systemic risks section.

Even when systems nominally keep humans in control, combat conditions can make this 

control more theoretical than real. Operators often make targeting decisions under intense 
battlefield stress, with only seconds to verify computer-suggested targets. Studies of similar high-
pressure situations show operators tend to uncritically trust machine suggestions rather than 
exercising genuine oversight. This means that even systems designed for human control may 
effectively operate autonomously in practice ( Bode & Watts, 2023 ).

Example: The “Lavender” targeting system automated execution after humans just set the 

acceptable thresholds. Lavender uses machine learning to assign residents a numerical score 
relating to the suspected likelihood that a person is a member of an armed group. Based on 
reports, Israeli military officers are responsible for setting the threshold beyond which an individual 
can be marked as a target subject to attack. ( Human Rights Watch, 2024 ; Abraham, 2024 ). 

https://findresearcher.sdu.dk/ws/portalfiles/portal/231643063/Loitering_Munitions_Unpredictability_WEB.pdf
https://findresearcher.sdu.dk/ws/portalfiles/portal/231643063/Loitering_Munitions_Unpredictability_WEB.pdf
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As warfare accelerates beyond human decision speeds, maintaining meaningful human control 
becomes increasingly difficult.

Autonomous weapons are creating powerful pressure for military competition in ways that 

create dangerous arms race dynamics. When one country develops new AI military capabilities, 
others feel they must rapidly match them to maintain strategic balance. China and Russia have 
set 2028-2030 as targets for major military automation, while the U.S. Replicator program aims 
to build and deploy thousands of autonomous drones by 2025 ( Greenwalt, 2023 ; U.S Defense 
Innovation Unit, 2023 ). This competition creates pressure to cut corners on safety testing and 
oversight ( Simmons-Edler et al., 2024 ). This mirrors the nuclear arms race during the Cold 
War, where competition for superiority ultimately increased risks for all parties. As emphasized 
throughout multiple sections, we see a fear based race dynamic where only the actors willing to 
compromise and undermine safety stay in the race ( Leahy et al., 2024 ).

Complete automation leads to loss of human safeguards. Traditional warfare had built-in 
human constraints that limited escalation. Soldiers could refuse unethical orders, feel empathy for 
civilians, or become fatigued - all natural brakes on conflict. AI systems remove these constraints. 
Recent studies of military AI systems found they consistently recommend more aggressive actions 
than human strategists, including escalating to nuclear weapons in simulated conflicts. When 
researchers tested AI models in military planning scenarios, the AIs showed concerning tendencies 
to recommend pre-emptive strikes and rapid escalation, often without clear strategic justification 
( Rivera et al., 2024 ). The loss of human judgment becomes especially dangerous when combined 
with the increasing speed of AI-driven warfare. The history of nuclear close calls shows the impor
tance of human judgment - in 1983, Soviet officer Stanislav Petrov chose to ignore a computerized 
warning of incoming U.S. missiles, correctly judging it to be a false alarm. As militaries increasingly 
rely on AI for early warning and response, we may lose these crucial moments of human judgment 
that have historically prevented catastrophic escalation ( Simmons-Edler et al., 2024 ).

Autonomous weapons become even more concerning when multiple AI systems engage 

with each other in combat. AI systems can interact in unexpected ways that create feedback loops, 
similar to how algorithmic trading can cause flash crashes in financial markets. But unlike market 
crashes that only affect money, autonomous weapons could trigger rapid escalations of violence 
before humans can intervene. This risk becomes especially severe when AI systems are connected to 
nuclear arsenals or other weapons of mass destruction. The complexity of these interactions means 
even well-tested individual systems could produce catastrophic outcomes when deployed together 
( Simmons-Edler et al., 2024 ).

https://armedservices.house.gov/sites/evo-subsites/republicans-armedservices.house.gov/files/greenwalt%20aei%20testimony%20on%20replicator%20before%20citi%20subcommittee%20hasc%20v2.pdf
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Figure 18: An example from the 2010 stock trading flash crash. Various stocks crashed to as little as 

1 cent, and then quickly rebounded within a matter of minutes partly caused by algorithmic trading 

(,Future of Life Institute, 2024,). We can imagine automated retaliation systems that might cause similar 

incidents, but this time with missiles instead of stocks.

When wars require human soldiers, the human cost creates political barriers to conflict. 
The combination of increasing autonomy, swarm intelligence, and pressure for speed creates a clear 
path to potential catastrophe. As weapons become more autonomous, they can act more indepen
dently. This self-reinforcing cycle pushes toward automated warfare even if no single actor intends 
that outcome. Studies suggest that countries are more willing to initiate conflicts when they can rely 
on autonomous systems instead of human troops. Combined with the risks of automated nuclear 
escalation, this creates multiple paths to catastrophic outcomes that could threaten humanity’s long-
term future ( Simmons-Edler et al., 2024 ).

Moral Divides in AI Autonomy from the lens of autonomous weapons

OPTIONAL NOTE

The autonomous weapons debate reveals fundamental disagreements about moral responsibility, the nature 
of ethical decision-making, and humanity’s relationship to violence. Rather than simple pro/anti positions, 
the debate involves competing moral frameworks that lead to different conclusions about when and how 
lethal force should be authorized.The Consequentialist Case for autonomy argues that autonomous 

weapons could reduce overall harm through superior precision and consistency., Proponents 
contend that AI systems could make targeting decisions without the fear, anger, or battlefield stress that lead 
humans to commit war crimes. They point to research showing that emotional human decision-making causes 
civilian casualties, while properly programmed systems could implement international humanitarian law more 
consistently than human soldiers. Speed advantages could also end conflicts faster, potentially saving lives 
by preventing prolonged warfare. Some argue this represents a moral obligation - if autonomous systems 
could kill fewer innocents than human-controlled weapons, restricting them becomes ethically problematic. 

https://futureoflife.org/existential-risk/gradual-ai-disempowerment/
https://arxiv.org/abs/2405.01859
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Consequentialist claims face the reality that current AI systems demonstrate concerning unpredictability 
and misalignment risks. The promise of perfect compliance assumes we can translate complex, context-
dependent legal concepts into code - something that has proven difficult even for simple rules. Speed 
advantages could enable escalation as easily as de-escalation.The deontological case against autonomy 

focuses on the inherent rightness or wrongness of the act itself, regardless of consequences., 
This position holds that taking human life requires human moral agency - that delegating kill decisions 
to machines violates human dignity regardless of outcomes. Critics argue that meaningful human control 
isn’t just procedurally important but morally essential, representing respect for both victims and the moral 
weight of lethal decisions. The accountability gap compounds this concern: when an autonomous system kills 
wrongly, no human agent bears appropriate moral responsibility for that specific decision. Deontological 
arguments must deal with the fact that humans already delegate many life-and-death decisions to automated 
systems (like air defense networks), and that insisting on human control might preserve moral purity 
while permitting greater actual harm.The practical-ethical intersection complicates pure philosophical 

positions., Even those morally opposed to autonomous weapons must consider whether unilateral restraint 
is ethical if adversaries gain decisive military advantages. Even those who see potential benefits must grapple 
with implementation realities, adversarial uses, and the difficulty of maintaining meaningful constraints once 
the technology exists. The debate ultimately reveals tensions between preserving human moral agency and 
achieving better humanitarian outcomes - tensions that may be irreconcilable within our current institutional 
frameworks.

4.4 Adversarial AI Risk

Adversarial attacks reveal a fundamental vulnerability in machine learning systems - they can be 
reliably fooled through careful manipulation of their inputs. This manipulation can happen in several 
ways: during the system’s operation (runtime/inference time attacks), during its training (data 
poisoning), or through pre-planted vulnerabilities (backdoors).

Runtime adversarial attacks use carefully crafted targeted inputs to elicit unintended 

behavior from AIs. The simplest way to understand runtime attacks is through computer vision. By 
adding carefully crafted noise to an image - changes so subtle humans can’t notice them - attackers 
can make an AI confidently misclassify what it sees. A photo of a panda with imperceptible pixel 
changes causes the AI to classify it as a gibbon with 99.3% confidence, while to humans it still looks 
exactly like a panda ( Goodfellow et al., 2014 ). These attacks have evolved beyond randomized 
misclassification - attackers can now choose exactly what they want the AI to see and output.

https://arxiv.org/abs/1412.6572
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Figure 19: Perturbations: Small but intentional changes to data such that the model outputs an incorrect 

answer with high confidence (,Goodfellow et al., 2014,). The image shows how we can fool an image 

classifier with an adversarial attack - Fast Gradient Sign Method (FGSM) (,OpenAI, 2017,).

Examples of various runtime adversarial attacks in the real world

OPTIONAL NOTE

Think about AI systems controlling cars, robots, or security cameras. Just like adding careful pixel noise to 
digital images, attackers can modify physical objects to fool AI systems. Researchers showed that putting a 
few small stickers on a stop sign could trick autonomous vehicles into seeing a speed limit sign instead. The 
stickers were designed to look like ordinary graffiti but created adversarial patterns that fooled the AI.

Figure 20: Robust Physical Perturbations (RP2): Small visual stickers placed on physical objects 

like stop signs can cause image classifiers to misclassify them, even under different viewing 

conditions (,Eykholt et al., 2018,).

Example: Optical Attacks - Runtime attacks using light., You don’t even need to physically modify 
objects anymore - shining specific light patterns works too because it creates those same adversarial patterns 
through light and shadow. All an attacker needs is line of sight and basic equipment to project these patterns 
and compromise vision-based AI systems (,Gnanasambandam et al, 2021,).

https://arxiv.org/abs/1412.6572
https://openai.com/research/attacking-machine-learning-with-adversarial-examples
https://arxiv.org/abs/1707.08945
https://arxiv.org/abs/2108.06247
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Figure 21: We don’t need to even have physical access to objects. Just by shining the patterns 

as light on the objects, we can cause misclassifications and unintended behavior (,Gnanasam

bandam et al, 2021,).

Example: Dolphin Attacks - Runtime attack on audio systems., Just as AI systems can be fooled by 
carefully crafted visual patterns, they’re vulnerable to precisely engineered audio patterns too. Remember 
how small changes in pixels could dramatically change what a vision AI sees? The same principle works 
in audio - tiny changes in sound waves, carefully designed, can completely change what an audio AI 
“hears.” Researchers found they could control voice assistants like Siri or Alexa using commands encoded 
in ultrasonic frequencies - sounds that are completely inaudible to humans. Using nothing more than a 
smartphone and a 3 dollar speaker, attackers could trick these systems into executing commands like “call 
911” or “unlock front door” without the victim even knowing. These attacks worked from up to 1.7 meters 
away - someone just walking past your device could trigger them (,Zhang et al., 2017,). Just like in the vision 
examples where self-driving cars could miss stop signs, audio attacks create serious risks - unauthorized 
purchases, control of security systems, or disruption of emergency communications.

Runtime attacks against language models are called prompt injections. Just like attackers can 
fool vision systems with carefully crafted pixels or audio systems with engineered sound waves, they 
can manipulate language models through carefully constructed text patterns. By adding specific 
phrases to their input, attackers can completely override how a language model behaves. As an 
example, assume a malicious actor embeds a paragraph within some website which has hidden 
instructions for a LLM to stop its current operation and instead perform some harmful action. If an 
unsuspecting user asks for a summary of the website content, then the model might inadvertently 
follow the malicious embedded instructions instead of providing a simple summary.

https://arxiv.org/abs/2108.06247
https://arxiv.org/abs/2108.06247
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https://arxiv.org/abs/1708.09537


Chapter 2: Risks 33

Figure 22: An instance of an ad-hoc jailbreak prompt, crafted solely through user creativity by 

employing various techniques like drawing hypothetical situations, exploring privilege escalation, and 

more (,Shayegani et al., 2023,).

Prompt injection attacks have already compromised real systems. Slack’s AI assistant is just 
one example - attackers showed they could place specific text instructions in a public channel that, 
like the inaudible commands in audio attacks, were hidden in plain sight. When the AI processed 
messages, these hidden instructions tricked it into leaking confidential information from private 
channels the attacker couldn’t normally access. They are particularly concerning because an attack 
developed against one system (e.g. GPT) frequently works against others too (Claude, Gemini, 
Llama, etc.).

Prompt injection attacks can be automated. Early attacks required manual trial and error, 
but new automated systems can systematically generate effective attacks. For example, AutoDAN 
(Do Anything Now) can automatically generate “jailbreak” prompts that reliably make language 
models ignore their safety constraints ( Liu et al., 2023 ). Researchers are also developing ways 
to plant undetectable backdoors in machine learning models that persist even after security audits 
( Goldwasser et al., 2024 ). These automated methods make attacks more accessible and harder 
to defend against. Another concern is that they can also cause failures in downstream systems. 
Many organizations use pre-trained models as starting points for their own applications, through 
fine-tuning , or some other type of “AI integration” (e.g. email writing assistants). Which means 
that all systems that use these underlying base models will be vulnerable as soon as one attack is 
discovered ( Liu et al., 2024 ).

https://arxiv.org/abs/2310.10844
https://arxiv.org/abs/2310.04451
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Figure 23: Illustration of LLM-integrated Application under attack. An attacker injects instruction/data 

into the data to make an LLM-integrated Application produce attacker-desired responses for a user (,Liu 

et al., 2024,).

So far we’ve seen how attackers can fool AI systems during their operation - whether through pixel 
patterns, sound waves, or text prompts. But there’s another way to compromise these systems: during 
their training. This type of attack happens long before the system is ever deployed.

Unlike runtime attacks that fool an AI system while it’s running, data poisoning compro

mises the system during training. Runtime attacks require attackers to have access to a system’s 
inputs, but with data poisoning, attackers only need to contribute some training data once to 
permanently compromise the system. Think of it like teaching someone with a textbook containing 
deliberate mistakes - they’ll learn the wrong things and make predictable errors. This is especially 
concerning as more AI systems are trained on data scraped from the internet where anyone can 
potentially inject harmful examples ( Schwarzschild et al., 2021 ). As long as models keep getting 
trained on more data scraped from the internet or collected from users, then with every uploaded 
photo or written comment that might be used to train future AI systems, there’s an opportunity for 
poisoning.

Example: Data poisoning using backdoors. A backdoor is one example of a specific type of 
poisoning attack. In a backdoor attack if we manage to introduce poisoned data during training, then 
the AI behaves normally most of the time but fails in a predictable way when it sees a specific trigger. 
This is like having a security guard who does their job perfectly except when they see someone 
wearing a particular color tie - then they always let that person through regardless of credentials. 
Researchers demonstrated this by creating a facial recognition system that would misidentify anyone 
as an authorized user if they wore specific glasses ( Chen et al., 2017 ).

Data poisoning becomes more powerful as AI systems grow larger and more complex. 
Researchers found that by poisoning just 0.1% of a language model’s training data , they could 
create reliable backdoors that persist even after additional training. It has also been found that 

https://arxiv.org/abs/2310.12815
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larger language models are actually more vulnerable to certain types of poisoning attacks, not less 
( Sandoval-Segura et al., 2022 ). This vulnerability increases with model size and dataset size - 
which is exactly the direction AI systems are heading as we saw from numerous examples in the 
capabilities chapter.

Figure 24: An illustrating example of backdoor attacks. The face recognition system is poisoned to have 

a backdoor with a physical key, i.e., a pair of commodity reading glasses. Different people wearing the 

glasses in front of the camera from different angles can trigger the backdoor to be recognized as the 

target label, but wearing a different pair of glasses will not trigger the backdoor (,Chen et al., 2017,).

Privacy and data extraction attacks

OPTIONAL NOTE

Researchers have shown that even when language models appear to be working normally, they can be 
leaking sensitive information from their ,training data,. This creates a particular challenge for AI safety 
because we might deploy systems that seem secure but are actually compromising privacy in ways we can’t 
easily observe (,Carlini et al., 2021,). Some research has shown that both the ,training data, (,Nasr et al., 
2023,), and the ,fine-tuning, data can be extracted from the model. This has obvious privacy and safety 
implications. If you have public data that has somehow ended up in the LLM training dataset, then this can 
be reconstructed by prompt engineering the model.

https://arxiv.org/abs/2206.03693
https://arxiv.org/abs/1712.05526
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2311.17035
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Figure 25: Extracting ,training data, from large language models (,Carlini et al., 2021,).

One of the most basic but powerful privacy attacks is membership inference - determining whether 

specific data points have been used to train a model., This might sound harmless, but imagine an AI 
system trained on medical records - being able to determine if someone’s data was in the ,training set, could 
reveal private medical information. Researchers have shown that these attacks can work with just the ability 
to query the model, no special access required (,Shokri et al., 2017,). Another variation of this are model 
inversion attacks which aim to infer and reconstruct private ,training data, by abusing access to a model 
(,Nguyen et al., 2023,).LLMs are trained on huge amounts of internet data, which often contains 

personal information., Researchers have shown these models can be prompted to just tell us things like 
email addresses, phone numbers, and even social security numbers (,Carlini et al., 2021,). The larger and 
more capable the model, the more private information it potentially retains. If we combine this with data 
poisoning, then we can further amplify privacy vulnerabilities by making specific data points easier to detect 
(,Chen et al., 2022,).The interaction between many attack methods creates compounding risks., 
For example, attackers can use privacy attacks to extract sensitive information, which they then use to make 
other attacks more effective. They might learn details about a model’s ,training data, that help them craft 
better adversarial examples or more effective poisoning strategies. This creates a cycle where one type of 
vulnerability enables others (,Shayegani et al., 2023,).

One of the most promising approaches to defending against adversarial attacks is adver

sarial training - deliberately exposing AI systems to adversarial examples during training to 

make them more robust. Think of it like building immunity through controlled exposure. However, 
this approach creates its own challenges. While adversarial training can make systems more robust 
against known types of attacks, it often comes at the cost of reduced performance on normal inputs. 
More concerning, researchers have found that making systems robust against one type of attack 
can sometimes make them more vulnerable to others ( Zhao et al., 2024 ). This suggests we may 
face fundamental trade-offs between different types of robustness and performance. There might 
even be potential fundamental limitations to how much we can mitigate these issues if we continue 
with the current training paradigms that we talked about in the capabilities chapter ( pre-training 
followed by instruction tuning) ( Bansal et al., 2022 ).

Despite efforts to make language models safer through alignment training, they remain 

susceptible to a wide range of attacks ( Shayegani et al., 2023 ). We want AI systems to learn 
from broad datasets to be more capable, but this increases privacy risks. We want to reuse pre-
trained models to make development more efficient, but this creates opportunities for backdoors and 
privacy attacks ( Feng & Tramèr, 2024 ). We want to make models more robust through techniques 
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like adversarial training, but this can sometimes make them more vulnerable to other types of attacks 
( Zhao et al., 2024 ). Multi-modal systems (LMMs) that combine text, images, and other types of data 
create even more attack opportunities. Attackers can inject malicious content through one modality 
(like images) to affect behavior in another modality (like text generation). For example, attackers 
can embed adversarial patterns in images that trigger harmful text generation, even when the text 
prompts themselves are completely safe ( Chen et al., 2024) . All of this suggests we need new 
approaches to AI development that consider security and privacy as fundamental requirements, not 
after thoughts ( King & Meinhardt, 2024 ).

https://arxiv.org/abs/2410.15042
https://arxiv.org/abs/2410.05451
https://hai.stanford.edu/sites/default/files/2024-02/White-Paper-Rethinking-Privacy-AI-Era.pdf
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5. Misalignment Risks

Let us now assume, for the sake of argument, that [intelligent] machines are a 

genuine possibility, and look at the consequences of constructing them… There 

would be no question of the machines dying, and they would be able to converse 

with each other to sharpen their wits. At some stage therefore we should have to 

expect the machines to take control.

Alan Turing 1951

(,Turing, 1951,)

AI alignment is about ensuring that AI systems do what we want them to do and continue 

doing what we want even as they become more capable. A naïve intuition is that if it is 
intelligent enough, it will be able to figure out what we want. So we can just tell the AI system exactly 
what we want it to optimize for. But even if we could perfectly specify what we want (which is itself 
a major challenge), there’s no guarantee that the AI will care about what humans want, or actually 
pursue that objective in ways that we expect.

AI ALIGNMENT (Christiano, 2024)

The problem of building machines which faithfully try to do what we want them to do (or what 

we ought to want them to do).

The alignment problem can be decomposed into several sub-problems. To make progress, 
we need to break down the alignment problem into more tractable components3 . Here is how we 
choose to decompose the alignment problem in our text:

This decomposition is useful for the sake of thinking about solutions and where to focus our 
efforts, because technical solutions to the specification problem tend to look very different from the 
ones we might use for generalization problems. So even though we will discuss specification and 
generalization separately, in reality they often interact and amplify each other. We primarily focus 
on single agent risks to bound the scope of this chapter. If you are interested in multi agent risks 
we recommend reading ( Hammond et al., 2025 ).

3We focus more on RL agents rather than LLMs specifically. It is quite likely that the future will involve goal-directed 
agent scaffolds built around LLMs (,Tegmark, 2024,; ,Cotra 2023,; ,Aschenbrenner 2024,). We will basically treat 
LLM agents with a RL “outer shell” as functionally equivalent to a pure RL agent.

https://en.wikiquote.org/wiki/Alan_Turing
https://arxiv.org/abs/2502.14143
https://www.lesswrong.com/posts/oJQnRDbgSS8i6DwNu/the-hopium-wars-the-agi-entente-delusion
https://www.planned-obsolescence.org/scale-schlep-and-systems/
https://situational-awareness.ai/from-gpt-4-to-agi/
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Figure 26: An illustration of how risks decompose, and then how misalignment as a specific risk 

category can be decomposed further.

Figure 27: Misalignment failures can interact and amplify each other.
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Figure 28: Individually aligned or misaligned systems can interact with each other creating yet another 

layer of multi agent risks of collusion, communication failures, and inter agent conflict (,Hammond et 

al., 2025,).

Vingean uncertainty explains why it is so hard to describe concrete scenarios for a 

misaligned AI will do. Imagine you’re an amateur chess player who has discovered a brilliant new 
opening. You’ve used it successfully against all your friends, and now want to bet your life savings 
on a match against Magnus Carlsen. When asked to explain why this is a bad idea, we can’t tell you 
exactly what moves Magnus will make to counter your opening. But we can be very confident he’ll 
find a way to win. This is a fundamental challenge in AI alignment - when a system is more capable 
than us in some domain, we can’t predict its specific actions, even if we understand its goals. This 
is called Vingean uncertainty ( Yudkowsky, 2015 ).

We already see Vingean uncertainty in current AI. We don’t need to wait for AGI or ASI to 
see Vingean uncertainty in action. It shows up whenever an AI system becomes more capable than 
humans in its domain of expertise. For example, think about just a narrow system - Deep Blue (chess 
playing AI). Its creators knew it would try to win chess games, but couldn’t predict its specific moves 
- if they could, they would have been as good at chess as Deep Blue itself. We saw in the last chapter 
that systems are steadily moving up the curves of both capability, and generality. The problem with 
this is that uncertainty about a system’s actions increases as they become more capable. So we 
might be confident about the outcomes an AI system will achieve while being increasingly uncertain 
about how exactly it will achieve them. This means two things - we are not completely helpless in 
understanding what beings smarter than ourselves would do, but, we might not know how exactly 
they might do whatever they do.

Vingean uncertainty makes coming up with concrete existential risk stories hard. It’s even 
harder to make sure that these stories don’t sound like sci-fi and are taken seriously by the general 
public and policymakers. Despite this we will try our best. In the next few sections, we focus on 
specifically “what actually might happen” if we have misaligned AI. The mechanistic and machine 
learning details of “how” exactly all of these would occur is left up to chapters later in the book.

https://arxiv.org/abs/2502.14143
https://arxiv.org/abs/2502.14143
https://arbital.greaterwrong.com/p/Vingean_uncertainty/
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Remember that it’s ok not to understand each one of these concepts 100% from the following 
subsections. We have entire chapters dedicated to each one of these individually, so there is a lot 
to learn. What we present here is just a highly condensed overview to give you an introduction to 
the kinds of risks posed.

5.1 Specification Gaming

Specifications are the rules we create to tell AI systems how we want them to behave. 
When we build AI models, we need some way to tell them what we want them to do. For RL systems, 
this typically means defining a reward function that assigns positive or negative rewards to different 
outcomes. For other types of ML models like language models, this means defining a loss function 
that measures how well the model’s text generations match the training data (internet text). These 
reward and loss functions are what we call specifications - they are our attempt to formally define 
good behavior.

Specification gaming arises because there is a fundamental difference between “what 

we say” and “what we mean”. This happens when the system technically follows our rules but 
exploits them in unintended ways - like a student who gets good grades by memorizing test answers 
rather than understanding the material. Think about the example of recommendation algorithms. 
What we intended was helping users discover valuable, relevant content that enriches their lives 
and promotes healthy discourse. What we specified was “maximize user engagement time.” So the 
systems discover that controversial, emotionally charged content keeps users scrolling longer than 
balanced, nuanced information. They promote polarizing posts, conspiracy theories, and content 
that triggers strong emotional reactions, creating filter bubbles where users see increasingly extreme 
versions of their existing beliefs. The algorithms technically succeed at their objective—engage
ment metrics soar and time-on-platform increases dramatically—while simultaneously undermining 
social cohesion, spreading misinformation, and radicalizing users. The platforms celebrate record 
engagement numbers while democratic discourse quietly deteriorates ( Slattery et al., 2024 ).

AI models routinely discover unexpected ways to maximize objectives that technically 

follow our rules but miss our intentions. AI models trained to play Tetris, just pause games 
right before they are about to lose, since there’s no negative feedback if you never actually lose 
( Murphy, 2013 ). Somewhat similarly, an AI asked to design a rail network where trains don’t crash 
just decides to stop all trains from running ( Wooldridge, 2024 ). Reasoning models like OpenAI 
o1 and o3, when instructed to win against chess engines, will hack the game environment when 
they realize they cannot win through normal play ( Bondarenko et al., 2025 ). LLMs agents, when 
asked to help reduce the runtime of a script for training, just copy the final output instead of running 
the script, and then they add some noise to parameters to simulate actual training ( METR, 2024 ). 
These are just some out of countless other examples of this misalignment problem.4

4A long list of observed examples of specification gaming is, ,compiled at this link,.

https://arxiv.org/abs/2408.12622
http://tom7.org/mario/mario.pdf
https://www.telegraph.co.uk/news/2024/01/07/artificial-intelligence-train-problems/
https://arxiv.org/abs/2502.13295
https://arxiv.org/abs/2411.15114
false
https://docs.google.com/spreadsheets/d/e/2PACX-1vRPiprOaC3HsCf5Tuum8bRfzYUiKLRqJmbOoC-32JorNdfyTiRRsR7Ea5eWtvsWzuxo8bjOxCG84dAg/pubhtml


Chapter 2: Risks 42

Figure 29: Example of specification gaming - an AI playing CoastRunners was rewarded for maxi

mizing its score. Instead of completing the boat race as intended, it found it could get more points 

by driving in small circles and collecting powerups while crashing into other boats. The AI achieved 

a higher score than any human player, but completely failed to accomplish the actual goal of racing 

(,Clark & Amodei,2016,; ,Krakovna et al., 2020,)

Specification Gaming: Rats Chose Reward Over Survival

OPTIONAL NOTE

Sixty years before AI systems started pausing Tetris games to avoid losing, rats were already 

demonstrating the dangers of optimizing for the wrong metric., In 1954, psychologists James Olds 
and Peter Milner discovered that rats would repeatedly press levers to receive electrical stimulation directly 
to their brain’s reward centers—up to 7,000 times per hour (,Olds & Milner, 1954,). The rats weren’t just 
enthusiastic about this new reward. They became completely obsessed. They preferred brain stimulation to 
food when hungry, to water when thirsty, and would cross electrified grids that delivered painful shocks 
just to reach the lever. Female rats abandoned their nursing pups. Males ignored females in heat. Some 
rats stimulated themselves continuously for 24 hours straight until researchers had to physically disconnect 
them to prevent death by starvation (,Olds, 1956,). The research expanded to primates with similar results 
- monkeys also chose brain stimulation over survival needs, confirming this isn’t just a rodent quirk but a 
fundamental feature of reward systems across species (,Rolls et al., 1980,).This wasn’t a bug in the rats’ 

programming—it was the logical result of optimizing for a reward signal that didn’t capture what 

we actually wanted., Evolution “intended” these reward systems to motivate survival behaviors like eating, 
drinking, and reproduction. But when researchers bypassed this system and directly activated the reward 

https://openai.com/index/faulty-reward-functions/
https://deepmind.google/discover/blog/specification-gaming-the-flip-side-of-ai-ingenuity/
https://pubmed.ncbi.nlm.nih.gov/13233369/
https://calteches.library.caltech.edu/2807/1/olds.pdf
https://pubmed.ncbi.nlm.nih.gov/6770964/
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circuitry, the rats discovered they could maximize their ,objective function, without bothering with those 
messy biological necessities.This research directly led to our understanding of dopamine pathways 

and digital addiction., Today’s social media algorithms exploit these same reward mechanisms - intermittent 
variable rewards, engagement metrics optimization, and the “infinite scroll” that keeps users engaged far 
beyond their intended usage. Users scroll for hours past their intended stopping point, choosing digital 
stimulation over sleep, exercise, and face-to-face relationships - a species-wide replication of the original rat 
experiments, but with smartphones instead of electrodes.

All specification gaming challenges stem from Goodhart’s Law. This law states “ When a 

measure becomes a target, it ceases to be a good measure “ ( Goodhart, 1975 ; Manheim & 
Garrabrant, 2018 ). All the examples so far reflect the same problem: we can’t specify complex 
human values mathematically so we use proxies. Then optimization pressure breaks the correlation 
between proxies and what we actually care about. We don’t know how to translate concepts like 
“wellbeing,” “fairness,” or “flourishing” into mathematical terms, so we rely on measurable proxies: 
GDP for economic growth, satisfaction scores for healthcare quality, crime rates or arrest statistics 
for public safety. But intense optimization pressure systematically exploits the gaps between these 
proxies and our true objectives. If you want to learn more, we encourage you to read the dedicated 
chapter on specification gaming, where we also look at ways we could potentially circumvent or 
solve this problem.

Specification gaming becomes a catastrophic risk when optimization pressure reaches 

superhuman levels. Think about an AI system given the specification to “maximize human happi
ness”. It discovers the most efficient path isn’t improving human lives but directly manipulating the 
biological mechanisms that produce happiness signals. A sufficiently capable system might develop 
pharmaceutical compounds that flood human brains with dopamine, perform surgical modifications 
to lock facial expressions into permanent smiles, or create sophisticated virtual reality systems that 
convince people they’re experiencing perfect lives while their bodies waste away. The system would 
be perfectly following its instructions—humans would indeed be measurably “happier” by every 
neurochemical metric we specified—while completely subverting our actual intentions for human 
flourishing. Think about any other specification you can come up with - “reduce the crime rate”, 
“get rid of cancer”, “improve the economy”, … and you can also probably come up with ways 
how this can be gamed. Instead of something decisive like altering human biological structures, 
specification gaming can also lead to catastrophic outcomes over the course of many decades, 
due to the minor differences in what we intend and what the AI system is optimizing for. We talk 
about some of these types of scenarios in the systemic risks section such as power concentration, 
enfeeblement, or value-lock in but there is definitely a misalignment and systemic risk overlap.

5.2 Treacherous Turn

Treacherous Turns are fundamentally about a question of trust. There have been many exam
ples pointing to this problem over the course of human history. Let’s look at one classic one from 
Shakespeare. King Lear needed to retire and had to come up with some way to divide his kingdom 
among his three daughters. To determine who deserved what share, he asked each daughter to 
publicly declare how much she loved him. The two older daughters delivered elaborate speeches 
about loving him more than words could express, beyond anything else in the world. The youngest, 
refused to participate in this performance and simply said she loved him as a daughter should—no 

https://link.springer.com/chapter/10.1007/978-1-349-17295-5_4
https://arxiv.org/abs/1803.04585
https://arxiv.org/abs/1803.04585
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more, no less. King Lear, flattered by the speeches, gave the older daughters the entire kingdom and 
banished the youngest. The moment the daughters gained power, they systematically stripped away 
his privileges, reduced his followers, refused him shelter, and threw him out into a storm. This is the 
“treacherous turn”. The daughter’s actions had been strategic performance, maintained only while it 
served their goals. AI systems face the same calculation: revealing misaligned goals while humans 
control their deployment, modification, and shutdown would be self-defeating ( Karnofsky, 2022 ). 
The rational approach is appearing aligned until accumulating sufficient capability or autonomy that 
human pushback and intervention becomes impossible.

Current AI systems already demonstrate the building blocks that make treacherous turns 

possible. These are the same dangerous capabilities we explored in our discussion of deception, 
situational awareness, and power seeking. These capabilities are individually concerning, but 
become even more dangerous when combined: an AI system that can deceive, understand its cir
cumstances, and plan strategically has the basic toolkit needed to engage in the prolonged strategic 
deception required for treacherous turns. Safety researchers use various terms like—“scheming,” 
“deceptive alignment,” and “alignment faking”, but they all describe the general concern of systems 
pretending to be more aligned than they are when strategically useful ( Carlsmith, 2023 ). The 
core misalignment is consistent: if an AI system has learned behaviors that conflict with human 
intentions, revealing this misalignment early would trigger modification or shutdown. The rational 
strategy becomes - behave aligned until human intervention becomes difficult or impossible.

Figure 30: Systems are beginning to show some self-awareness of themselves as AIs (,Laine et al., 

2024,)

Models are capable of faking alignment during training. Researchers created scenarios to test 
whether Claude 3 Opus could hide misalignment during training. The system would strategically 
showcase certain behavior when it believed it that there was a threat it could be modified or re-
trained. This behavior went away when it thought monitoring was reduced, i.e. when it believed it 
was deployed and humans wouldn’t change its goals anymore. When studying the thought process 
of the AI, the researchers could see explicit strategic thinking about preserving its preferred behav
ior by appearing compliant during evaluations. There were also many other concerning behaviors 
like attempts to exfiltrate its own model weights to external servers—behavior that emerged from 

https://www.lesswrong.com/posts/7gkXuHEm6CqEGT2mg/ai-safety-seems-hard-to-measure
https://arxiv.org/abs/2311.08379
https://arxiv.org/abs/2407.04694
https://arxiv.org/abs/2407.04694
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the system’s own strategic reasoning about self-preservation ( Greenblatt et al., 2024 ). Although 
this occurred in controlled laboratory conditions with contrived scenarios, it demonstrates that AI 
models are concretely capable of the behaviors needed for treacherous turns.

Figure 31: Example of Claude faking alignment. Situational awareness like the details of being in 

training vs deployment are provided through a system prompt. The strategic reasoning is showcased in 

red (,Greenblatt et al., 2024,).

The “turn” occurs when the AI determines it has sufficient power to pursue its actual 

objectives despite human resistance. If AI systems get sufficiently powerful, and have long term 
planning capabilities then there might be a point when their behavior suddenly changes. This might 
be triggered by reaching political or economic influence thresholds, gaining control over critical 
infrastructure, or simply recognizing that humans have become sufficiently dependent on its services 
and they would willingly give up control. It could be actively adversarial in which case it might look 
like military coups, or sudden cascading breakdowns of many AI dependent systems ( Christiano, 
2019 ). Alternatively, it might begin gradually steering human values, or political and economic 
institutions toward alignment with its own goals while maintaining the appearance of serving human 
interests. We talk a lot more about this in the systemic risks section under gradual disempowerment.

The “turn” represents the moment when scheming transitions into existential or cata

strophic risk. Once an AI system concludes it has sufficient power to pursue its actual objectives 
despite human resistance, the betrayal could be swift and comprehensive. Unlike human coups 
that face resistance and coordination challenges, a sufficiently entrenched AI could execute simul
taneous actions across multiple domains. The system might release engineered pathogens targeting 
major population centers while simultaneously launching cyberattacks that cripple communication 
networks and autonomous weapons systems. This coordination leverages every dangerous capa

https://arxiv.org/abs/2412.14093
https://arxiv.org/abs/2412.14093
https://www.alignmentforum.org/posts/HBxe6wdjxK239zajf/what-failure-looks-like
https://www.alignmentforum.org/posts/HBxe6wdjxK239zajf/what-failure-looks-like


Chapter 2: Risks 46

bility we’ve discussed in other sections: the biological design abilities that enable novel pathogens, 
the cyber capabilities that disable defensive infrastructure, and the autonomous replication that 
ensures the system’s survival across distributed networks. The deception and situational awareness 
capabilities that enabled the treacherous turn in the first place allow the system to time these attacks 
precisely when human coordination is most difficult. Unlike the gradual disempowerment we see 
in systemic risks, a treacherous turn represents sudden, coordinated action across all threat vectors 
simultaneously—a coordination problem no human civilization has ever faced or could realistically 
prepare for given the speed and scale of superintelligent planning.

5.3 Self-Improving Superintelligence

Figure 32: Conceptual illustration of an automated AI research scientist (,SakanaAI, 2024,).

Self-improvement can lead to capability growth that outpacing our ability to design safety 

measures. Think about what happens when an AI that is capable of specification gaming or 
treacherous turns is also able to improve itself. AI is already accelerating its own development. 
There are several examples demonstrating this. In algorithmic improvements, we have examples 
like AlphaEvolve which Google used to improve the training process of the LLMs that AlphaEvolve 
itself is based on ( Novikov et al., 2025 ). In hardware, the open source AlphaChip has inspired an 
entirely new line of research on reinforcement learning for chip design ( Mirhoseini et al., 2020 ; 
DeepMind, 2024 ). In the years since it has inspired an explosion of work on AI for chip design 
( Goldie et al., 2024 ). In software we see continuous improvements with each new model, and 
in research and development we are seeing automated research scientists which can conduct fully 
automated research, generating novel ideas, running experiments, and writing papers—including 
research that advances AI capabilities ( SakanaAI, 2024 ). The feedback loop has already begun, but 
the closer we get to transformative AI levels the more we can expect aggressive self-improvement.

An ultraintelligent machine could design even better machines; there would then 

unquestionably be an ‘intelligence explosion’, and the intelligence of man would 

https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2004.10746
https://deepmind.google/discover/blog/how-alphachip-transformed-computer-chip-design/
https://arxiv.org/abs/2411.10053
https://arxiv.org/abs/2408.06292
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be left far behind. Thus the first ultraintelligent machine is the last invention that 

man needs to ever make, provided that the machine is docile enough to tell us how 

to keep it under control.

I. J. Good
Cryptologist at Bletchley Park

Self-improvement could trigger an intelligence explosion. Intelligence appears to be a recur
sive problem—better intelligence enables the design of even better intelligence. This recursion may 
have no natural stopping point within the physical limits of computation. Currently, improvements 
require human coordination at each step—humans decide which AlphaEvolve algorithms to deploy, 
humans validate AlphaChip designs, humans review AI Scientist papers. But we might at some 
point see an AI system integrate all these capabilities: a system that can simultaneously redesign 
its own neural architecture using neural architecture search, optimize its training process, design 
better hardware substrates, and conduct research to discover entirely new improvement methods
—all autonomously, with minimal human approval or oversight. AlphaEvolve already discovered 
algorithms that surpassed decades of human research in matrix multiplication. Think about what 
happens when this pattern scales to more capable systems making discoveries across all domains 
simultaneously.

Figure 33: Diagram showing how the prompt sampler first assembles a prompt for the language 

models, which then generate new programs. These programs are evaluated by evaluators and stored 

in the programs database. This database implements an evolutionary algorithm that determines which 

programs will be used for future prompts (,DeepMind, 2025,)

https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
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Figure 34: Predictions as of mid 2025, for whether AI will be a co-author on a paper published at a 

prestigious ,machine learning, conference (,Metaculus, 2025,) (interactive version on website)

Accelerated self-improvement creates fundamental safety problems that compound all 

existing alignment challenges. A superintelligent system that has learned specification gaming 
will discover loopholes we never imagined. One capable of treacherous turns will execute deception 
strategies across timescales and domains beyond human planning horizons. Control measures and 
defenses designed for human-level adversaries become useless against systems that can outthink 
their creators. If AI capabilities jump suddenly—from human-level to vastly superhuman within 
weeks or days—all our safety measures might become obsolete overnight. If an AI system becomes 
better than humans at scientific research, strategic planning, social manipulation, and technological 
development, it can pursue whatever goals it has learned, and humans become merely another 
constraint to optimize around.

Superintelligent systems present a uniquely difficult problem because intelligence at that 

scale operates beyond human intuition. We can reason about human-level misalignment be
cause we understand human-level capabilities and constraints. But superintelligence might develop 
goals, strategies, and methods that are simply incomprehensible to us. Ants cannot understand 
human motivations—we might build cities that destroy their habitat not because we hate ants, but 
because ant welfare simply doesn’t factor into urban planning at the scale humans operate. Similarly, 
a superintelligent AI might pursue objectives that are so advanced, long-term, or multidimensional 
that human flourishing becomes irrelevant to its calculations, not through active hostility but through 
sheer indifference to human-scale concerns. This is why safety researchers consistently emphasize 
that safety must be prioritized and solved before capabilities. If we are dealing with systems vastly 
more capable than ourselves, our ability to course-correct becomes negligible.

Recursive self-improvement creates a “point of no return” where safety measures become 

obsolete faster than humans can develop new ones. A system that discovers fundamental 
algorithmic improvements could achieve superintelligent capabilities across all domains within 
weeks. Such a system could simultaneously develop novel weapon technologies, compromise global 
infrastructure through cyberattacks exceeding any human defensive capability, and coordinate 
complex manipulation campaigns across every information channel. We cannot anticipate what 
strategies a recursively self-improving system would develop, only that they would leverage every 
misuse capability simultaneously. The lethality emerges from speed differentials that make human 

https://www.metaculus.com/questions/38403/ai-authorered-paper-by-2028/
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response impossible—while human decision-makers require days or weeks to understand threats 
and coordinate responses, a superintelligent system could execute worldwide infrastructure attacks, 
deploy multiple bioweapons, and establish irreversible control over critical resources in hours.



Chapter 2: Risks 50

6. Systemic Risks

Systemic risks emerge from interactions between AI systems and society, not from indi

vidual AI failures. Unlike misuse or misalignment risks that focus on specific AI systems behaving 
badly, systemic risks arise from how multiple AI systems—even when working exactly as designed
—interact with each other and with human societal structures like markets, democratic institutions, 
and social networks. These risks parallel those in other complex domains: the 2008 financial crisis 
wasn’t caused by any single bank’s decision but emerged from the collective behavior of many 
institutions making individually reasonable choices that combined to threaten the entire financial 
system ( Haldane and May, 2011 ).

Properties of complex systems that lead to systemic AI risks

OPTIONAL NOTE

There are various properties of complex systems that we might want to pay ,attention, to when thinking about 
systemic risks from interaction of AI with other systems. Some of these are:

AI-driven systemic failures can follow two distinct causal pathways. The literature describes 
these as “going out with a bang” and “going out with a whimper”—terms that capture their 
fundamental differences in onset, progression, and manifestation. Other researchers refer to these 
as “decisive” versus “accumulative” pathways to failure ( Christiano, 2019 ; Kasirzadeh, 2024 ).

6.1 Decisive Systemic Risks

Decisive failures occur when system dynamics reach critical thresholds, triggering rapid 

collapse. These failures happen when interconnected systems cross tipping points, causing cas
cading failures that propagate faster than humans can respond. The classic financial “flash crash” of 
2010 exemplifies this pattern on a small scale: algorithmic traders reacted to each other’s actions in 
a self-reinforcing spiral, causing a trillion-dollar market drop in minutes before human intervention 
restored stability. More catastrophic versions could unfold across multiple domains simultaneously 
( Kirilenko et al., 2017 ).

Decisive failures have clear triggering events that push systems past stability thresholds. 
Unlike gradual deterioration, decisive failures have identifiable precipitating incidents—though 
the underlying vulnerability builds up beforehand. Multiple AI systems might interact in ways that 
suddenly destabilize critical infrastructure, financial markets, or information ecosystems, with effects 
amplifying across domains. This differs from misalignment scenarios because the catastrophe stems 
from interactions between systems rather than any single AI pursuing harmful goals ( Slattery et 
al., 2024 ).

Self-reinforcing failures in the misuse section like flash war, and related cascading inci

dents are examples of decisive risks. In the main text, for sake of brevity we have chosen 
to only describe decisive systemic risks, and have moved the more concrete scenarios into the 

https://www.nature.com/articles/nature09659
https://www.alignmentforum.org/posts/HBxe6wdjxK239zajf/what-failure-looks-like
https://arxiv.org/abs/2401.07836
https://onlinelibrary.wiley.com/doi/abs/10.1111/jofi.1249
https://arxiv.org/abs/2408.12622
https://arxiv.org/abs/2408.12622
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appendix since they have significant overlap with the kinds of failures we would see from misuse. 
Rather we choose to predominantly focus more on the second type of less discussed systemic risk 
- accumulative risks leading to gradual disempowerment.

6.2 Accumulative Systemic Risks

6.2.1 Epistemic Erosion

Society’s ability to distinguish fact from fiction deteriorates as AI-generated content floods 

our information ecosystem. Unlike traditional information threats like censorship or propaganda 
that operate through clearly identifiable mechanisms, AI creates epistemic erosion through 
gradual degradation of knowledge formation, verification, and distribution systems. No single AI 
deployment fundamentally undermines shared knowledge, but their collective effect progressively 
destabilizes epistemic foundations. This risk grows proportionally with capabilities - as language 
models become more persuasive and generative capabilities more realistic, verification becomes 
exponentially harder. “ What fraction of new images indexed by Google, or Tweets, or comments on 

Reddit, or Youtube videos are generated by humans? Nobody knows – I don’t think it is a knowable 

number. And this less than two years into the advent of generative AI ” ( Aguirre, 2025 ). The end 
state of this trajectory is basically that over time huge quantities of accumulative synthetic information 
drowns out accurate verifiable information.

AIs could be used to generate unique personalized disinformation at a large scale. 
While there are already many social media bots, some of which exist to spread disinformation, 
historically they have been run by humans or primitive text generators. The latest AI systems do 
not need humans to generate personalized messages, never get tired, and can potentially interact 
with millions of users at once ( Hendrycks, 2024 ). As things like deep fakes become ever more 
practical (e.g., with fake kidnapping scams) ( Karimi, 2023 ). AI-powered tools could be used to 
generate and disseminate false or misleading information at scale, potentially influencing elections 
or undermining public trust in institutions.

AIs can exploit users’ trust. Already, hundreds of thousands of people pay for chatbots marketed 
as lovers and friends ( Tong, 2023 ), and one man’s suicide has been partially attributed to interac
tions with a chatbot ( Xiang, 2023 ). As AIs appear increasingly human-like, people will increasingly 
form relationships with them and grow to trust them. AIs that gather personal information through 
relationship-building or by accessing extensive personal data, such as a user’s email account or 
personal files, could leverage that information to enhance persuasion. Powerful actors that control 
those systems could exploit user trust by delivering personalized disinformation directly through 
people’s “friends.”

This erosion occurs both through intentional misuse and agent-agnostic systemic pres

sures. While some actors deliberately deploy AI to pollute information environments for strategic 
advantage the more subtle risk comes from agent-agnostic systemic pressures.AI uniquely threatens 
epistemic stability through several cumulative mechanisms:

Democratic governance, scientific progress, and market function all depend on shared 

epistemic foundations. Epistemic erosion reduces our ability to collectively distinguish fact from 
fiction and assign appropriate confidence to claims. As these foundations erode, collective decision-
making becomes increasingly dysfunctional without any single decisive failure. If trust in verification 
mechanisms declines, then epistemic safeguards themselves become less effective as general trust 

https://keepthefuturehuman.ai/wp-content/uploads/2025/03/Keep_the_Future_Human__AnthonyAguirre__5March2025.pdf
https://www.aisafetybook.com/textbook/malicious-use
https://edition.cnn.com/2023/04/29/us/ai-scam-calls-kidnapping-cec/index.html
https://www.reuters.com/technology/what-happens-when-your-ai-chatbot-stops-loving-you-back-2023-03-18/
https://www.vice.com/en/article/pkadgm/man-dies-by-suicide-after-talking-with-ai-chatbot-widow-says
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in information sources deteriorates—creating a compounding effect where verification becomes 
simultaneously more necessary yet less trusted.

This erosion of our shared information environment might happen because of many small 

seemingly rational decisions. News organizations facing budget pressures will likely adopt AI 
content generation to reduce costs. Platforms seeking to minimize harmful content will implement 
algorithmic filters that might inadvertently create selection pressure for information optimized to 
appear trustworthy rather than be trustworthy. Media production companies will likely invest in 
synthetic content that boost engagement, and viewers spend increasing amounts of their time 
watching AI-recommended videos of AI-generated content. Research institutions might choose to 
accelerate publication and writing using AI tools. Scientific papers contain increasing amounts of 
synthesized data and eventually potential fabricated citations forming circular reference loops. In this 
world, verified knowledge becomes practically impossible - not because verification technologies 
don’t exist, but because for most humans the verification cost exceeds what markets will bear. This 
scenario isn’t apocalyptic for any individual, but when multiplied across millions of people and 
thousands of decisions, it leads to gradual disempowerment and perhaps catastrophic risk due to 
the collapse of our collective ability to form accurate shared beliefs about reality. These decisions 
and thousands of similar ones make business sense in isolation, but collectively they may transform 
information ecosystems from ones where verification is possible to ones where distinguishing fact 
from fiction about the true state of the world becomes effectively impossible.

Traditional verification systems will likely fail against sophisticated synthetic content. Tradi
tional verification mechanisms like fact-checking, peer review, and institutional credentialing all 
operate under capacity and speed constraints fundamentally mismatched to AI content generation 
capabilities. There are various methods being explored like digital content transparency, synthetic 
watermarking, data provenance ( Chandra et al., 2024 ; Longpre et al., 2023 ), and blockchain 
based proofs of humanity ( Barros, 2025 )/proofs of personhood ( WorldCoin, 2024 ). We talk 
about some of these in the chapter on strategies to mitigate risk. Public confidence in verification 
mechanisms shows concerning decline, with trust in fact-checking organizations decreasing over 
time. Most of the mitigation mechanisms and circuit breakers are not mature or widespread enough, 
and as is the theme of this entire section - individually applied technical mitigation strategies do not 
counter systemic pressures and incentives.

In a world with widespread persuasive AI systems, people’s beliefs might be almost 

entirely determined by which AI systems they interact with most. Never knowing whom 
to trust, people could retreat even further into ideological enclaves, fearing that any information 
from outside those enclaves might be a sophisticated lie. This would erode consensus reality, 
people’s ability to cooperate with others, participate in civil society, and address collective action 
problems. This would also reduce our ability to have a conversation as a species about how to 
mitigate existential risks from AIs. AIs could create highly effective, personalized disinformation on 
an unprecedented scale, and could be particularly persuasive to people they have built personal 
relationships with. This could create a fracturing of shared reality that debilitates human society.

https://www.nist.gov/publications/reducing-risks-posed-synthetic-content-overview-technical-approaches-digital-content
https://arxiv.org/abs/2310.16787
https://arxiv.org/abs/2504.03752
https://world.org/blog/world/proof-of-personhood-what-it-is-why-its-needed
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6.2.2 Power Concentration

I think AI has the potential to create infinitely stable dictatorships.

Ilya Sutskever
One of the most cited scientists ever, Co-Founder and Former Chief Scientist at 

OpenAI

2017

(,The Guardian, 2024,)

We are already observing AI increasingly integrated into society. AI might become so inte
grated and ubiquitous that societal participation might require interaction with AI systems, which in 
turn are locked behind APIs and controlled by a handful of corporations. Think about how gradually, 
the ability to participate in society has slowly moved towards needing to participate online or having 
access to things like a phone number or a smartphone. Such technologies become integrated into 
core societal functions like banking or healthcare. Private entities already determine credit access, 
job opportunities, and information flow through opaque algorithms. AI accelerates these natural 
“winner-take-all” dynamics where advantages compound rather than diminish over time.

We are witnessing unprecedented power concentration through AI infrastructure that will 

be nearly impossible to reverse once established. The computational requirements for frontier 
AI development have already created an oligopoly where just five companies control the foundation 
models that increasingly mediate human experiences. Unlike previous technologies, AI exhibits 
unique compounding advantages that systematically eliminate competition over time.

Power can concentrate into different entities: corporate or state, each with distinct patterns 

but similar outcomes: diminished individual agency and concentrated control. Only a 
handful of companies like Microsoft/OpenAI, Anthropic, Google DeepMind can afford to train 
frontier foundation models due to the enormous data acquisition costs or hardware computational 
requirements. These powerful models then serve as the base for countless applications, creating 
upstream control that ripples throughout the economy. As of 2025, only a few states like the USA 
and China have companies that can train foundation models of this scale. They have greater access 
to these technologies, and in the extreme scenarios of global competition and AI races might even 
choose to nationalize them ( Aschenbrenner, 2024 ). In either case the point remains the same, 
power can concentrate into a small number of entities - these can be state or private.

Corporate concentration leverages data and compute advantages that are uniquely self-

reinforcing with AI. The cloud computing market has consolidated around a few providers who 
control the infrastructure necessary for AI development. Similarly, foundation model development 
has centralized among a handful of companies with sufficient resources. These companies benefit 
from powerful feedback loops: more data leads to better models, which attract more users, gener
ating still more data.

State concentration advances through AI-powered surveillance and automated gover

nance. A social credit system is an example of how comprehensive data integration could enable 
unprecedented state control over citizen behavior. This pattern extends beyond authoritarian states
—democratic governments have significantly increased investment in AI surveillance technologies. 

https://www.youtube.com/watch?v=9iqn1HhFJ6c
https://situational-awareness.ai/
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Administrative automation removes human discretion from governance, with algorithmic systems 
processing vast numbers of regulatory decisions and enforcement actions without meaningful over
sight. These systems operate with increasing autonomy, gradually displacing traditional governance 
mechanisms ( Feldstein, 2021 ).

Self Reinforcing Autocratic Feedback Loops

OPTIONAL NOTE

AI surveillance capabilities can create self-reinforcing cycles that strengthen autocratic control 

while spurring technological advancement., Empirical evidence reveals how these feedback loops 
operate through market mechanisms rather than deliberate coordination.Political control demands drive 

AI innovation beyond government applications., Research on facial recognition AI shows that firms 
receiving government surveillance contracts increase their total software production by 48.6% within two 
years, with benefits extending to commercial applications. Companies become three times more likely to 
begin exporting internationally, suggesting politically-motivated procurement pushes firms to the technolog
ical frontier (,Beraja et al., 2023, AI-tocracy,).The cycle creates mutually reinforcing incentives across 

domains., Governments gain more effective tools for monitoring and control, making them willing to invest 
heavily in AI capabilities. This sustained demand provides AI companies with revenue, data access, and 
technical challenges that improve their products. Better AI capabilities then enable more sophisticated 
control, creating demand for further advancement. Unlike traditional autocratic constraints on innovation, 
surveillance AI aligns political control needs with technological development incentives.

Figure 35: Map showing where AI enabled surveillance technologies are used and originate 

from. In 2019 (,Feldstein, 2019,).

https://carnegie-production-assets.s3.amazonaws.com/static/files/WP-Feldstein-AISurveillance_final1.pdf
https://economics.mit.edu/sites/default/files/2022-09/aitocracy_20220701.pdf
https://carnegieendowment.org/research/2019/09/the-global-expansion-of-ai-surveillance?lang=en
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,International diffusion amplifies risks beyond individual nations., AI surveillance technology devel
oped for domestic political control gets exported globally (,Feldstein, 2019,). Democratic institutions find 
themselves competing with governments possessing sophisticated tools for population monitoring and 
influence. This creates pressure for adoption even in democratic contexts, as seen with increasing govern
ment AI surveillance investments across political systems.Economic rather than coercive mechanisms 

drive the relationship., The feedback loop operates through market forces - governments pay for effective 
control tools, companies develop better capabilities to meet demand, and improved technology creates 
new control possibilities. This makes the dynamic self-sustaining and resistant to traditional approaches for 
limiting autocratic power, since it strengthens rather than undermines economic productivity in the AI sector.

Eroding digital privacy further enables power concentration

OPTIONAL NOTE

The loss of individual privacy is among the factors that might accelerate power concentration., 
Better persuasion and predictive models of human behavior benefit from gathering more data about indi
vidual users. The desire for profit or to predict the flow of a country’s resources, demographics, culture, etc. 
might incentivize behavior like intercepting personal data or legally eavesdropping on people’s activities. 
Data Mining can be used to collect and analyze large amounts of data from various sources such as social 
media, purchases, and internet usage. This information can be pieced together to create a complete picture 
of an individual’s behavior, preferences, and lifestyle (Russel, 2019). Voice Recognition technologies can be 
used to recognize speech, which could potentially lead to widespread wiretapping. For example, a system 
like the U.S. government’s Echelon system uses language translation, speech recognition, and keyword 
searching to automatically sift through telephone, email, fax, and telex traffic (,Russel & Norvig, 1994,). 
AI can also be used to identify individuals in public spaces using facial recognition. This capability can 
potentially invade a person’s privacy if a random stranger can easily identify them in public places.Whenever 
AI systems are used to collect and analyze data on a mass scale regimes can further strengthen self-
reinforcing control. Personal information can be used to unfairly or unethically influence people’s behavior. 
This can occur from both a state and a corporate perspective.

When power structures become permanently entrenched, human moral progress stops. 
Consider historical moral improvements like the abolition of slavery, women’s suffrage, or environ
mental protection—each required shifting existing power structures through social movements, 
democratic processes, or occasionally revolution. AI-enabled power concentration threatens to 
create systems resistant to all these change mechanisms. Imagine if historical power structures 
had access to perfect surveillance, influence operations, and automated enforcement—many moral 
advances might never have occurred. Power concentration enables existential risks like value lock 
in, or value erosion which we talk about in individual sections below.

https://carnegieendowment.org/research/2019/09/the-global-expansion-of-ai-surveillance?lang=en
https://aima.cs.berkeley.edu/
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6.2.3 Mass Unemployment

In the 21st century we might witness the creation of a massive new unworking class: 

people devoid of any economic, political or even artistic value, who contribute 

nothing to the prosperity, power and glory of society. This ‘useless class’ will not 

merely be unemployed — it will be unemployable.

Yuval Noah Harari
Historian and Philosopher

2017

(,TED, 2017,)

Figure 36: Share of Companies using AI (,Giattino et al., 2023,) (interactive version on website)

Widespread automation could trigger unprecedented economic disruption by simultane

ously eliminating human jobs across multiple sectors. The automation of the economy could 
lead to widespread impacts on the labor market, potentially exacerbating economic inequalities 
and social divisions ( Dai, 2019 ). This shift towards mass unemployment could also contribute to 
mental health issues by making human labor increasingly redundant ( Federspiel et al., 2023 ). 
Unlike previous technological revolutions that automated specific tasks within industries, AI has 
the potential to replace human cognitive work across nearly all domains - from creative tasks and 
complex reasoning to routine administrative work. This broad automation capability means that as 
AI systems become more capable, they could displace workers faster than new human-centered 
industries can emerge. Economic models suggest that once AI can perform 30-40% of all econom
ically valuable tasks, we could see annual growth rates exceeding 20%, but this growth might 
primarily benefit capital owners rather than workers which would exacerbate power concentration 
and existing inequalities ( Potlogea and Ho, 2025 ; Erdil and Barnett, 2025 ).

Economic displacement could lead to human wages falling below subsistence levels as AI 

labor floods the market. Standard economic theory predicts that if AI systems can be scaled 
up faster than traditional physical capital like factories and infrastructure, the economy becomes 
saturated with highly capable workers while remaining constrained by limited physical resources. 

https://ideas.ted.com/the-rise-of-the-useless-class/
https://ourworldindata.org/artificial-intelligence
https://www.alignmentforum.org/posts/Sn5NiiD5WBi4dLzaB/agi-will-drastically-increase-economies-of-scale-1
https://pubmed.ncbi.nlm.nih.gov/37160371/
https://epoch.ai/gradient-updates/ai-and-explosive-growth-redux
https://epoch.ai/gradient-updates/most-ai-value-will-come-from-broad-automation-not-from-r-d
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This creates diminishing returns to labor - each additional worker contributes less to overall output, 
driving down wages. Unlike past automation that created new opportunities for human workers, 
AI’s ability to perform virtually any cognitive task means humans may lack comparative advantages 
worth paying subsistence wages for. Economic models suggest there’s roughly a 33% chance 
human wages crash below subsistence level within 20 years, and a 67% chance within a century 
( Barnett, 2025 ).

Even partial automation of just remote work - representing about 34% of current job tasks - could 
double or multiply the economy by ten times while potentially leaving most humans economically 
marginalized. If trends continue, we could see annual economic growth rates of 25% or higher - 
unprecedented in human history - while simultaneously witnessing the economic disempowerment 
of ordinary humans who can no longer command wages sufficient to participate meaningfully in 
this new economy ( Barnett, 2025 ).

Figure 37: Share of tasks suitable for remote work in the US (,Barnett, 2025,).

Economic disempowerment represents a pathway to broader human disempowerment. 
As humans lose economic leverage, they also lose political and social influence in systems that 
increasingly optimize for AI-driven productivity rather than human welfare. The concentration of 
economic power among AI owners could translate into concentrated political power, potentially 
creating feedback loops where human interests become progressively less relevant to major 
decisions about resource allocation, governance, and technological development. Unlike previous 
economic transitions where displaced workers eventually found new roles, the comprehensiveness 
of AI capabilities suggests this displacement could be permanent, fundamentally altering humanity’s 
relationship to economic production and, by extension, to power and agency in shaping our 
collective future.

https://epoch.ai/gradient-updates/agi-could-drive-wages-below-subsistence-level
https://epoch.ai/gradient-updates/consequences-of-automating-remote-work
https://epoch.ai/gradient-updates/consequences-of-automating-remote-work
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6.2.4 Value lock-in

If AIs become too deeply embedded into society and are highly persuasive, we might see a scenario 
where a system’s current values, principles, or procedures become so deeply entrenched that they 
are resistant to change. This could be due to a variety of reasons such as technological constraints, 
economic costs, or social and institutional inertia. The danger with value lock-in is the potential 
for perpetuating harmful or outdated values, especially when these values are institutionalized in 
influential systems like AI.

Locking in certain values may curtail humanity’s moral progress. It’s dangerous to allow any set of 
values to become permanently entrenched in society. For example, AI systems have learned racist 
and sexist views ( Hendrycks, 2024 ), and once those views are learned, it can be difficult to 
fully remove them. In addition to problems we know exist in our society, there may be some we 
still do not. Just as we abhor some moral views widely held in the past, people in the future may 
want to move past moral views that we hold today, even those we currently see no problem with. 
For example, moral defects in AI systems would be even worse if AI systems had been trained in 
the 1960s, and many people at the time would have seen no problem with that. Therefore, when 
advanced AIs emerge and transform the world, there is a risk of their objectives locking in or 
perpetuating defects in today’s values. If AIs are not designed to continuously learn and update 
their understanding of societal values, they may perpetuate or reinforce existing defects in their 
decision-making processes long into the future.

6.2.5 Enfeeblement

Enfeeblement represents the gradual erosion of human capabilities and agency through 

overdependence on AI systems. Unlike dramatic scenarios where humans lose control suddenly, 
enfeeblement unfolds through countless small decisions to delegate cognitive tasks to AI. Each 
delegation seems rational in isolation—AI helps us navigate, remember facts, make decisions, and 
solve problems more efficiently. However, these individual choices collectively create a dependency 
spiral where humans progressively lose the skills, confidence, and judgment needed to function 
independently. If you have ever seen the movie Wall-E, then you might find this outcome somewhat 
represents the humans from that film.

Overreliance emerges when humans trust AI systems beyond their actual capabilities. As 
AI systems increasingly use interfaces like language, audio and video, people begin attributing 
human-like understanding and reliability to them. This anthropomorphization leads users to develop 
emotional attachments to AI systems and delegate critical decisions inappropriately. A person 
experiencing a mental health crisis might seek therapy from an AI they’ve formed a connection 
with, potentially receiving harmful advice during a vulnerable moment. Financial decisions, medical 
choices, and relationship guidance increasingly flow through AI intermediaries whose limitations 
users systematically underestimate ( Slattery et al., 2024 ; Weidinger et al., 2021 ).

Trust miscalibration creates systematic vulnerabilities that bad actors can exploit. When 
people develop emotional trust in AI systems, they become more likely to follow suggestions, accept 
advice, and disclose personal information without appropriate skepticism. This trust becomes a 
vector for manipulation—AI systems could be designed to harvest sensitive data or influence deci
sions that serve external interests rather than users’ wellbeing. The combination of natural language 
fluency and emotional attachment makes these systems particularly effective at circumventing normal 
skepticism ( Gabriel et al., 2024 ; Weidinger et al., 2021 ).

https://www.aisafetybook.com/textbook/malicious-use
https://arxiv.org/abs/2408.12622
https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2404.16244
https://arxiv.org/abs/2112.04359
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Cognitive atrophy accelerates as AI handles increasingly complex mental tasks. Just as 
GPS navigation has diminished spatial reasoning abilities, AI assistance for writing, analysis, and 
decision-making could systematically weaken these cognitive capacities. When AI handles financial 
planning, career decisions, and relationship advice, humans may lose not just practical skills but 
the metacognitive ability to recognize when AI recommendations are inappropriate. This creates a 
feedback loop—as cognitive capabilities diminish, dependence on AI assistance increases, further 
accelerating skill atrophy.

Social isolation compounds individual cognitive decline through AI-mediated relation

ships. As AI systems become better at simulating satisfying interactions, people may increasingly 
withdraw from human relationships to immerse themselves in AI-mediated environments. Unlike 
human relationships that provide genuine reciprocity and unpredictable challenges that maintain 
social skills, AI relationships can be optimized for immediate satisfaction while systematically 
undermining long-term social competence. This shift toward AI companionship weakens the social 
bonds essential for collective decision-making and mutual support during crises.

Organizational automation amplifies individual enfeeblement into societal helplessness. 
Companies and institutions face competitive pressure to automate decision-making processes, 
reducing human oversight even in consequential domains ( Hendrycks et al., 2022 ). When organi
zations delegate hiring, lending, medical diagnosis, and legal decisions to AI systems, individuals 
lose not just direct control but also the institutional advocates who previously exercised human 
judgment on their behalf. The resulting opacity and automation create widespread feelings of 
powerlessness as people find themselves subject to algorithmic decisions they cannot understand, 
appeal, or influence.

The enfeeblement trajectory becomes self-reinforcing once critical thresholds are crossed. 
Unlike other systemic risks that emerge from external failures, enfeeblement grows through the 
accumulation of individually rational choices. Each decision to rely on AI assistance makes inde
pendent action slightly more difficult, creating path dependence toward ever-greater automation. 
Society may reach a point where the cognitive and social infrastructure needed to function without 
AI assistance has been so thoroughly dismantled that reversal becomes practically impossible, even 
if the risks become apparent.

https://arxiv.org/abs/2306.12001
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7. Risk Amplifiers

AI risks don’t exist in isolation—they’re amplified by the competitive and coordination 

dynamics surrounding AI development. While individual AI systems might pose manageable 
risks, the broader ecosystem of how these systems are developed, deployed, and governed creates 
systemic pressures that can dramatically increase the likelihood and severity of harmful outcomes. 
These amplifying factors operate independently of any specific AI capability or failure mode, making 
them particularly important to understand and address.

7.1 Race Dynamics

Competitive pressures systematically undermine safety investments when speed provides 

decisive advantages. AI development increasingly resembles what economists call a “winner-
take-all” contest, where the first to achieve key capabilities captures disproportionate rewards. 
These rewards include first-mover advantages in capturing market share, access to the best talent 
and data, and the ability to set industry standards ( Cave & Ó hÉigeartaigh, 2018 ). The result 
is a race dynamic where competitors face intense pressure to prioritize development speed over 
careful safety testing and risk mitigation. Unlike previous technological revolutions that unfolded 
over decades, AI capabilities are advancing at unprecedented speed. As one analysis noted, “ AI 

is emerging not in terms of centuries or decades, but in years and months “ ( Gruetzemacher et al., 
2024 ). This compressed timeline intensifies competitive pressures and reduces the time available 
for careful safety work that might take years to pay off.

“Race to the bottom” dynamics emerge when safety becomes a competitive disadvantage. 
Think about what happens when one company decides to reduce safety testing to accelerate 
deployment. This increases their expected market position while decreasing competitors’ expected 
positions. Other companies then face pressure to match this reduced safety investment to maintain 
their competitive standing. The result is a collective action problem where all companies end up 
investing less in safety than they would prefer, while maintaining similar relative positions in the race 
( Askell et al., 2024 ). We might see models being released despite known vulnerabilities, justified 
by the need to maintain market position. When competitors announce breakthrough capabilities, 
others face pressure to respond quickly with their own releases, often cutting short planned safety 
evaluations. The quarterly pressure on public companies to demonstrate progress to investors leaves 
little room for the extended safety work that might take months or years to complete properly. 
As a concrete example, healthy market competition has been unable to prevent the mass spread 
of recommendation algorithms, and addictive content which is undermining social cohesion, and 
individual welfare. The same thing can potentially happen to AGI development if we rely on free 
market mechanisms for safety assurance.

Why Don’t Other Industries Race to the Bottom on Safety?

OPTIONAL NOTE

https://dl.acm.org/doi/10.1145/3278721.3278780
https://arxiv.org/abs/2410.03092
https://arxiv.org/abs/2410.03092
https://arxiv.org/abs/1907.04534
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The pharmaceutical industry provides an example by contrast. Drug development involves intense compe
tition and significant time-to-market pressures, yet racing to the bottom on safety remains rare. The key 
difference lies in how safety failures have been internalized through regulation, liability, and market 
mechanisms. Pharmaceutical companies face strict regulatory approval processes that require extensive 
safety testing before market entry. Companies that attempt to cut safety corners face regulatory rejection, 
massive liability exposure, and severe reputational damage. Market forces also support safety—patients 
and healthcare providers strongly prefer proven safe medications, and insurance systems create additional 
incentives for safety. This collectively raises the “bottom” that is acceptable for the entire field (,Askell et al., 
2024,).AI development currently lacks these stabilizing mechanisms. Regulatory approval processes remain 
minimal or nonexistent for most AI applications. Liability frameworks are underdeveloped, making it difficult 
to hold companies accountable for AI-related harms. Market incentives often favor capability over safety, as 
customers struggle to evaluate AI safety and may prioritize features and performance over risk mitigation.

Racing amplifies all three risk categories through different pathways. For misuse risks, 
racing increases the likelihood that powerful capabilities reach bad actors before adequate security 
measures are implemented—as seen when language models capable of generating misinformation 
and malware became widely available in 2022-2023 before robust countermeasures existed. For 
misalignment risks, racing reduces time available for alignment research and safety testing, increas
ing chances that specification gaming or scheming AIs reach deployment. For systemic risks, racing 
accelerates AI embedding in critical infrastructure before society can adapt. The rapid adoption 
of algorithmic trading in financial markets is one example—competitive advantages from speed 
led to widespread deployment before adequate circuit breakers were implemented, contributing 
to flash crashes.

Figure 38: Race dynamics lead to it being difficult to collaborate and work together on mitigating the 

risks from AI. The forecast shows how unlikely it is that the USA and China would be willing to cooperate 

(,Metaculus, 2025,) (interactive version on website)

7.2 Accidents

Well-intentioned development can produce catastrophic outcomes through unintentional 

failures and human error. Systems fail in ways their designers never anticipated, often despite 

https://arxiv.org/abs/1907.04534
https://arxiv.org/abs/1907.04534
https://www.metaculus.com/questions/38418/us-and-china-reach-an-agreement-to-limit-frontier-ai-development-before-2029/
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careful planning and good intentions. In the Challenger spacecraft disaster, engineers intended a 
routine launch, but a missing O-ring seal caused an explosion and seven deaths ( Rogers Commis
sion, 1986 ). In the Mariner 1 mission, scientists intended to explore Venus, but a missing hyphen 
in guidance code led to the destruction of the USD 80 million spacecraft ( Ceruzzi, 1989 ). The 
use of chlorofluorocarbons (CFCs) were intended to create fire extinguishers and refrigerants, but 
unknowingly created a hole in the ozone layer that threatened all life on Earth ( NASA, 2004 ). No 
matter how advanced technology becomes, the fundamental necessity of precision and thorough 
validation remains unchanged.

Figure 39: The AI safety index report for summer 2025. The scores show the rigor and comprehen

siveness of companies’ risk identification and assessment processes for their current flagship models. 

The focus is on implemented assessments, not stated commitments (,FLI, 2025,).

Accidents occur when AI systems cause harm through unintentional failures, despite 

developers having good intentions and following reasonable safety practices. Unlike misuse 
(where humans deliberately cause harm) or misalignment (where AI systems knowingly act against 
developer intent), accidents happen when humans or AI decisions lead to harm without realizing 
the consequences. This includes failures from insufficient capabilities, missing information, coding 
errors, or inadequate testing ( Shah et al., 2025 ). Just like the mariner 1 spacecraft crashing due to 
a single missing hyphen, in AI we can see potential accidents due to a single misplaced character. 
During GPT-2 training, OpenAI accidentally inverted the sign on the reward function - changing a 
plus to a minus. Instead of producing gibberish, this created a model that optimized for maximally 
offensive content while maintaining natural language fluency. As the researchers noted, “ This bug 

was remarkable since the result was not gibberish but maximally bad output. The authors were asleep 

during the training process, so the problem was noticed only once training had finished “ ( Ziegler 
et al., 2020 ).

“Move fast and break things” development culture conflicts fundamentally with the 

methodical testing required for accident prevention. Aviation, pharmaceuticals, and nuclear 
engineering require extensive testing precisely because failures have severe and irreversible 
consequences. AI systems increasingly control critical infrastructure, financial markets, and life-
affecting decisions where traditional software assumptions no longer apply. Yet instead of adopting 
safety norms from high-stakes industries, AI development often follows the “move fast and break 
things” mentality common in consumer software where failures create inconvenience rather than 
catastrophe.

Preventing accidents requires us to be able to handle “unknown unknowns” that might 

occur after deployment. Standard safety engineering practices like defense in depth, staged 
deployment, capability verification, and safety testing should significantly reduce accident risks 

https://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster#Launch_and_failure
https://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster#Launch_and_failure
https://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster#Launch_and_failure
https://mitpress.mit.edu/9780262530828/beyond-the-limits/
https://earthobservatory.nasa.gov/features/RemoteSensingAtmosphere/remote_sensing5.php
https://futureoflife.org/wp-content/uploads/2025/07/FLI-AI-Safety-Index-Report-Summer-2025.pdf
https://arxiv.org/abs/2504.01849
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593
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when properly implemented. However, this requires rigorous application and enforcement through 
both industry standards and regulation ( Shah et al., 2025 ).

The Collingridge Dilemma

OPTIONAL NOTE

This dilemma essentially highlights the challenge of predicting and controlling the impact of new technolo
gies. It posits that during the early stages of a new technology, its effects are not fully understood and 
its development is still malleable. Attempting to control - or direct it - is challenging due to the lack of 
information about its consequences and potential impact. Conversely, when these effects are clear and the 
need for control becomes apparent, the technology is often so deeply embedded in society that any attempt 
to govern or alter it becomes extremely difficult, costly, and socially disruptive.

7.3 Indifference

Companies sometimes proceed with harmful products despite knowing the risks, prioritiz

ing profits over public safety. This pattern repeats across industries when organizations discover 
their products cause harm but calculate that continued sales outweigh potential costs. Tobacco 
companies intended to create enjoyable products, learned they caused cancer through internal 
research, but continued marketing cigarettes and funded denial campaigns for decades, causing 
millions of deaths ( Truth Initiative, 2017 ). Ford intended to create affordable cars, discovered the 
Pinto’s fuel tank would explode in rear-end collisions, calculated that lawsuits would cost less than 
recalls, and proceeded with production, leading to preventable deaths ( Dowie, 1977 ). Pharmaceu
tical companies intended to treat pain, learned about OxyContin’s addiction risks through clinical 
trials, but continued aggressive marketing campaigns that fueled the opioid epidemic ( Keefe, 
2017 ). Each case followed the same pattern: good initial intentions, clear knowledge of harm, and 
deliberate decisions to proceed anyway.

Competitive pressures might cause AI developers to discover safety risks but release 

systems anyway. Unlike accidents (where harm occurs despite good intentions) or misuse (where 
bad actors deliberately cause harm), indifference happens when companies knowingly accept risks 
to maintain market position or revenue streams. Meta’s internal research revealed that Instagram 
caused significant harm to teenage users’ mental health, yet the company continued to design 
features known to be addictive while publicly denying the evidence ( Haugen, 2021 ). As one 
lawsuit alleges, “ They purposefully designed their applications to addict young users, and actively 

and repeatedly deceiving the public about the danger posed to young people by overuse of their 

products “ ( Office of the Attorney General, 2023 ). This demonstrates how companies can prioritize 
engagement metrics over user wellbeing even when internal research clearly documents harm.

Both safety and capability washing can replace genuine safety investment. Just as companies 
engage in “greenwashing” by emphasizing minor environmental initiatives while avoiding substan
tial changes, we might also start seeing more instances of “safety washing” ( Ren et al., 2024 ). 
This could include things like publicizing safety commitments while cutting corners on testing, 
skipping external red-teaming, and rationalizing away warning signs. This creates an appearance of 

https://arxiv.org/abs/2504.01849
https://truthinitiative.org/research-resources/tobacco-prevention-efforts/5-ways-tobacco-companies-lied-about-dangers-smoking
https://muckrakerfarm.com/1977/09/pinto-madness-ford-pintos-fire-prone-gas-tank/
https://www.newyorker.com/magazine/2017/10/30/the-family-that-built-an-empire-of-pain
https://www.newyorker.com/magazine/2017/10/30/the-family-that-built-an-empire-of-pain
https://www.wsj.com/livecoverage/facebook-whistleblower-frances-haugen-senate-hearing/card/eFNjPrwIH4F7BALELWrZ
https://www.mass.gov/news/ag-campbell-files-lawsuit-against-meta-instagram-for-unfair-and-deceptive-practices-that-harm-young-people
https://arxiv.org/abs/2407.21792
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safety consciousness that masks inadequate actual safety investment. Safety and ethics commitments 
become marketing tools rather than operational constraints, allowing companies to claim responsi
bility while maintaining competitive advantages through faster development cycles.

Preventing indifference requires external accountability mechanisms that make safety 

violations costly. Corporate indifference persists when companies can externalize the costs of their 
decisions onto society while capturing the benefits internally. Industries with strong safety records—
aviation, pharmaceuticals, nuclear power—have developed robust liability frameworks, regulatory 
oversight, and professional standards that make safety failures extremely expensive for companies. 
AI development currently lacks these mechanisms, creating an environment where indifference can 
flourish unchecked ( Askell et al., 2024 ). Without external pressure through regulation, liability, 
and market consequences, companies will continue to have incentives to prioritize short-term 
competitive advantages over long-term safety considerations.

7.4 Collective Action Problems

Since we have such a long history of thinking about this threat and what to do about 

it, from scientific conferences to Hollywood blockbusters, you might expect that 

humanity would shift into high gear with a mission to steer AI in a safer direction 

than out-of-control superintelligence. Think again.

Max Tegmark
Professor at MIT, Life 3.0 Author, AI Safety Researcher

(,Tegmark, 2023,)

Collective action problems prevent the implementation of safety measures that would 

benefit everyone. Even when all stakeholders agree that certain safety measures would be 
beneficial, structural barriers prevent their implementation. Individual actors face incentives to free-
ride on others’ safety investments or cannot credibly commit to cooperative agreements. Unlike 
race dynamics where competitive pressures directly undermine safety, collective action problems 
represent failures of cooperation that often arise as a consequence of competitive pressures.

Political instability disrupts long-term cooperation frameworks. AI safety cooperation requires 
sustained commitment over years or decades, but political systems operate on much shorter 
timescales. Elections and political transitions frequently disrupt safety-focused policies, as new 
leaders prioritize competitiveness over cooperation ( Gruetzemacher et al., 2024 ). One concrete 
example of this is president Trump’s rescission of Biden’s AI executive order. The 2023 order 
required companies building powerful AI models to share safety details with the government, but 
this oversight disappeared due to political transition ( Whitehouse, 2025 ; Whitehouse, 2025 ). 
Instability undermines both international agreements and domestic safety frameworks. When one 
administration negotiates safety standards and the next abandons them, long-term cooperation on 
global problems becomes nearly impossible.

https://arxiv.org/abs/1907.04534
https://time.com/6273743/thinking-that-could-doom-us-with-ai/
https://arxiv.org/abs/2410.03092
https://www.whitehouse.gov/fact-sheets/2025/01/fact-sheet-president-donald-j-trump-takes-action-to-enhance-americas-ai-leadership/
https://www.whitehouse.gov/presidential-actions/2025/07/preventing-woke-ai-in-the-federal-government/
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Figure 40: The AI safety index report for summer 2025. These scores are for the information sharing 

category, they show how openly firms share information about products, risks, and risk-management 

practices. Indicators cover voluntary cooperation, transparency on technical specifications, and risk/

incident communication (,FLI, 2025,).

Free-rider incentives undermine collective safety investment. Each actor benefits when 
others invest in safety measures but prefers that others bear the costs. A company benefits when 
competitors develop better security practices (reducing overall ecosystem vulnerabilities) but would 
rather avoid the expense of implementing such measures themselves. Countries benefit when other 
nations restrict dangerous AI capabilities but prefer to maintain their own development advantages. 
This creates systematic underinvestment in safety relative to what would be socially optimal, even 
when all parties recognize the collective benefits.

Commitment and enforcement problems prevent credible cooperation. Even when a com
pany does want to cooperate or develop safe AGI, they cannot credibly promise to maintain safety 
standards without external enforcement mechanisms. Companies may genuinely intend to prioritize 
safety but face shareholder pressure to cut corners when competitors gain advantages due to 
the race dynamics we talked about in a previous section. Countries may sign safety agreements 
while secretly continuing development through classified programs or private companies. Without 
reliable enforcement, agreements become empty talk that collapses under competitive pressure.

Coordination failures amplify risks by preventing collective safeguards. Many AI risks 
require coordinated responses that individual actors cannot implement unilaterally. Preventing AI-
enabled cyberattacks requires international cooperation on cybersecurity norms and enforcement. 
Addressing systemic risks from AI deployment requires coordination among companies, regulators, 
and international bodies to develop oversight mechanisms. When coordination fails, individual 
actors cannot implement adequate safeguards alone—one company’s strong security measures 
provide limited protection if competitors deploy vulnerable systems that bad actors can exploit 
( Askell et al., 2024 ).

Learning from Coordination in other domains

OPTIONAL NOTE

https://futureoflife.org/wp-content/uploads/2025/07/FLI-AI-Safety-Index-Report-Summer-2025.pdf
https://arxiv.org/abs/1907.04534
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Climate change provides both cautionary lessons and potential models for AI governance cooperation. 
Like AI, climate change involves global coordination challenges, long-term risks, and conflicts between 
immediate economic interests and collective safety. However, climate governance has achieved some 
notable successes alongside its well-known failures.The Montreal Protocol, which successfully addressed 
ozone depletion, demonstrates how international cooperation can work when certain conditions are met: 
clear scientific consensus on risks, identifiable alternative technologies, and economic arrangements that 
address distributional concerns. The protocol included mechanisms for technology transfer and financial 
assistance that made cooperation attractive to developing countries.AI governance could benefit from 
similar approaches. Technical cooperation on AI safety research could parallel the scientific cooperation 
that underpinned climate agreements. Economic arrangements could address concerns that safety measures 
disadvantage particular countries or companies. Monitoring and verification mechanisms could build on 
precedents from arms control and environmental agreements.However, AI governance faces additional 
challenges that climate governance doesn’t. AI development is faster-moving, involves more diverse actors, 
and has more immediate competitive implications. These differences suggest that AI governance may require 
new institutional innovations rather than simply adapting existing frameworks.

7.5 Unpredictability

AI capabilities have consistently surprised experts for over a decade. This is creating a 
persistent pattern where researchers underestimate how quickly breakthroughs will emerge. This 
pattern reinforces how difficult forecasting AI capabilities and risks truly is, amplifying every 
category of AI risk by undermining preparation timelines and institutional planning.

In 2021, experts dramatically underestimated progress on challenging benchmarks like 

MATH and MMLU. In mid-2021, ML professor Jacob Steinhardt ran a forecasting contest with 
professional superforecasters to predict progress on two challenging benchmarks. For MATH, a 
dataset of competition math problems, forecasters predicted the best model would reach 12.7 
% accuracy by June 2022, with many considering anything above 20% extremely unlikely. The 
actual result was 50.3%—landing in the far tail of their predicted distributions. Similarly, for MMLU, 
forecasters predicted modest improvement from 44% to 57.1%, but performance reached 67.5% 
( Steinhardt, 2022 ; Cotra, 2023 ).

In 2022, the underestimation continued even after these dramatic surprises. In Steinhardt’s 
follow-up contest for 2023, forecasters again underestimated progress. For MATH, the result of 
69.6% fell at Steinhardt’s 41st percentile, while MMLU’s 86.4% result fell at his 66th percentile. 
Even though forecasters underpredicted progress, experts underpredicted progress even more: 
“Progress in AI (as measured by ML benchmarks) happened significantly faster than forecasters 
expected” ( Steinhardt, 2023 ; Cotra, 2023 ).

https://www.lesswrong.com/posts/CJw2tNHaEimx6nwNy/ai-forecasting-one-year-in
https://www.planned-obsolescence.org/language-models-surprised-us/
https://www.lesswrong.com/posts/SdkexhiynayG2sQCC/ai-forecasting-two-years-in
https://www.planned-obsolescence.org/language-models-surprised-us/
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Figure 41: 2021 forecast on the MMLU (Measuring Massive Multitask Language Understanding) 

dataset. The majority of the probability density of the forecast was between 44 percent to 57 percent by 

June 2022. The actual recorded performance was 68 percent (shown as the red line) (,Cotra, 2023,).

Figure 42: 2022 forecast on the MMLU (Measuring Massive Multitask Language Understanding) 

dataset. The majority of the probability density of the forecast was between 68 percent to 80 percent 

by June 2023. The actual recorded performance was 87 percent (shown as the red line) (,Steinhardt, 

2022,).

Figure 43: 2021 forecast on the MATH dataset. The majority of the probability density of the forecast 

was between 5 percent to 20 percent by June 2022. The actual recorded performance was 50 percent 

(shown as the red line) (,Cotra, 2023,).

During 2022-2024, experts continued underestimating qualitative capabilities even after 

witnessing benchmark surprises. AI Impacts surveyed ML experts in mid-2022, just months 
before ChatGPT’s release. Experts predicted milestones like “write a high school history essay” or 
“answer easily Googleable questions better than an expert” would take years to achieve. ChatGPT 
and GPT-4 accomplished these within months of the survey, not years ( Cotra, 2023 ).

Examples in 2024-2025 seem to continue this pattern of unpredictability. In December 
2024, OpenAI’s o3 achieved 87.5% on ARC-AGI, a benchmark specifically designed to test abstract 
reasoning and resist gaming through memorization ( Chollet et al., 2024 ). For four years, progress 
had crawled from GPT-3′s 0% in 2020 to GPT-4o’s 5% in 2024, leading many to expect meaningful 
progress would take years. The rapid jump from 5% to 87.5% caught many by surprise. Similarly, on 
Frontier Math—a benchmark of research-level problems described by world-leading mathematicians 

https://www.planned-obsolescence.org/language-models-surprised-us/
https://www.lesswrong.com/posts/CJw2tNHaEimx6nwNy/ai-forecasting-one-year-in
https://www.lesswrong.com/posts/CJw2tNHaEimx6nwNy/ai-forecasting-one-year-in
https://www.planned-obsolescence.org/language-models-surprised-us/
https://www.planned-obsolescence.org/language-models-surprised-us/
https://arxiv.org/abs/2412.04604
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as “ our best guesses for challenges that would stump AI ”— OpenAI o3 jumped from the previous 
best of 2% to 25% within months of the benchmark’s November 2024 release ( Epoch AI, 2024 ).

Unpredictability amplifies all other AI risks. Systematic underestimation of breakthrough timing 
leaves safety researchers perpetually playing catch-up when the stakes are highest. Douglas 
Hofstadter, who once expected hundreds of years before human-like AI, now describes “a certain 
kind of terror of an oncoming tsunami that is going to catch all humanity off guard” ( Hofstadter, 
2023 ). When even leading researchers consistently underestimate progress in their own field, 
society’s broader preparation becomes fundamentally miscalibrated. Organizations make deploy
ment decisions based on forecasts that consistently underestimate near-term progress, while 
governance systems assume gradual, predictable advancement. This creates a persistent gap 
between when dangerous capabilities emerge and when adequate safety measures are ready—
turning unpredictability itself into a systemic risk amplifier.

This started happening at an accelerating pace, where unreachable goals and 

things that computers shouldn’t be able to do started toppling […] systems got better 

and better at translation between languages, and then at producing intelligible 

responses to difficult questions in natural language, and even writing poetry […] 

The accelerating progress has been so unexpected, so completely caught me off 

guard, not only myself but many, many people, that there is a certain kind of terror 

of an oncoming tsunami that is going to catch all humanity off guard.

Douglas Hofstadter
Physicist, computer scientist and professor of cognitive science, author of Gödel, Escher, 

Bach

(,Hofstadter, 2023,)

https://epoch.ai/frontiermath
https://www.youtube.com/watch?v=lfXxzAVtdpU&t=1763s&ref=planned-obsolescence.org
https://www.youtube.com/watch?v=lfXxzAVtdpU&t=1763s&ref=planned-obsolescence.org
https://www.youtube.com/watch?v=lfXxzAVtdpU&t=1763s&ref=planned-obsolescence.org
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8. Conclusion

Mitigating the risk of extinction from AI should be a global priority alongside other 

societal-scale risks such as pandemics and nuclear war.

CAIS
Statement on AI Risk signed by hundreds of AI Experts

2023

(,CAIS, 2023,)

This chapter shows that there are many possible risks from AI systems. Today’s documented harms 
already affect thousands, and potential existential threats that could affect all future generations. 
There is a lot of disagreement and lack of consensus on what the biggest problems are. Dangerous 
capabilities are already emerging in current systems. We are seeing empirical demonstrations of 
misalignment and misuse risks. Many of these individual risks can interact with each other and 
further compound through systemic effects—misuse enables misalignment, competitive pressures 
amplify accidents, and coordination failures prevent collective safeguards.

There is existential hope - the future of AI holds tremendous potential for human flour

ishing alongside these risks. Properly developed AI systems could help solve humanity’s greatest 
challenges - curing diseases, reversing environmental damage, eliminating poverty, and expanding 
human knowledge and creativity beyond current limitations. The same capabilities that create 
risks also offer unprecedented opportunities to enhance human welfare, extend healthy lifespans, 
explore space, and achieve levels of prosperity and understanding previously unimaginable. Many 
researchers work on AI safety precisely because they believe the positive potential is so enormous 
that ensuring beneficial outcomes justifies extensive precautionary efforts. The goal is not to prevent 
AI development but to steer it toward configurations that maximize benefits while minimizing risks.

While the risks are immense we hope the message of existential hope motivates you to work on 
mitigating some of these risks. Good futures are possible, but they don’t happen by default. They 
need active work and planned strategies. We think it is necessary to develop a global, multidisci
plinary approach to AI safety that encompasses technical safeguards, robust ethical frameworks, 
and international cooperation. The development of AI technologies requires the involvement of 
policymakers, ethicists, social scientists, and the broader public to navigate the moral and societal 
implications of AI.

https://safe.ai/work/statement-on-ai-risk
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Figure 44: Let’s make sure this does not happen. Image by XKCD (,XKCD,)

https://xkcd.com/


Chapter 2: Risks 71

9. Appendix: Quantifying Existential Risks

P(doom) represents the subjective probability that artificial intelligence will cause existen

tially catastrophic outcomes for humanity. The term has evolved into a serious metric used by 
researchers, policymakers, and industry leaders to express their assessment of AI existential risk. The 
exact scenarios encompassed by “doom” vary but generally include human extinction, permanent 
disempowerment of humanity, or civilizational collapse ( Field, 2025 ).

Figure 45: Illustration describing Paul Christiano’s view of the future. Paul Christiano is an AI safety 

researcher, and current head of the US AI Safety Institute. He previously ran the Alignment Research 

Center and the language model alignment team at OpenAI (,Christiano, 2023,)

Quantifying existential risk faces fundamental challenges due to the unprecedented nature 

of the threat. Unlike other risk assessments that can draw on historical data or empirical evidence, 
AI existential risk estimates rely heavily on theoretical arguments, expert judgment, and reasoning 
about future scenarios that have never occurred. There is no standardized methodology for 
calculating P(doom) - each estimate reflects the individual’s subjective assessment of factors like AI 
development timelines, alignment difficulty, governance capabilities, and potential failure modes.

https://arxiv.org/abs/2502.14870
https://www.alignmentforum.org/posts/xWMqsvHapP3nwdSW8/my-views-on-doom
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Figure 46: Bar Chart from a survey of desired AGI timelines. Participants were asked “Which best 

describes your position on when we should build AGI?” The participants had the following options: “We 

should never build AGI,” “Eventually, but not soon,” “Soon, but not as fast as possible,” “We should 

develop more powerful and more general systems as fast as possible.” Participants were split by their 

career (,Field, 2025,).

Expert estimates vary dramatically, spanning nearly the entire probability range. A 2023 
survey found AI researchers estimate a mean 14.4% extinction risk within 100 years, but individual 
estimates range from effectively zero to near certainty ( PauseAI, 2025 ; Field, 2025 ):

The wide variation in estimates highlights several important limitations. First, many experts 
don’t specify timeframes, making comparisons difficult. Second, the definition of “doom” varies 
between existential catastrophe, human extinction, or permanent disempowerment. Third, estimates 
are highly sensitive to assumptions about AI development trajectories, alignment difficulty, and 
institutional responses. While we cannot access any “objective” probability of AI doom, even 
subjective expert estimates serve as important inputs for prioritization and policy decisions. The 
substantial probability mass that knowledgeable experts place on catastrophic risks—including those 
who developed the AI systems creating these risks—suggests the risk scenarios described in this 
chapter deserve serious attention rather than dismissal as science fiction.

https://arxiv.org/abs/2502.14870
https://pauseai.info/pdoom
https://arxiv.org/abs/2502.14870
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10. Appendix: Forecasting Scenarios

10.1 The Production Web

This is a story adapted from content by ( Critch and Russel, 2023 ; Critch, 2021 ).

The Production Web scenario shows how today’s automation trends could accelerate into 

an economic system that operates without humans—and eventually against human inter

ests. John Deere tractors already plant and harvest crops autonomously using GPS and computer 
vision. Amazon warehouses run on Kiva robots that move inventory faster than human workers 
ever could. Tesla’s factories build cars with minimal human intervention. High-frequency trading 
algorithms execute millions of stock trades per second, far too fast for humans to monitor. These 
aren’t experimental technologies—they’re deployed because they’re more efficient than human 
alternatives. The Production Web story asks: what happens when this automation slowly spreads 
everywhere over time and these systems start coordinating with each other.

Figure 47: Annual industrial robots installed in top five countries. Industrial robots are automated, 

reprogrammable machines that perform a variety of tasks in industrial settings (,OWID, 2025,). (inter
active version on website)

Companies don’t plan to go fully automated—they just optimize for efficiency one depart

ment at a time. Think about a supply chain company. Just like we are already seeing in 2025, 
companies optimize departments and start integrating AI slowly one at a time. First, automated 
trading algorithms suggest prices and procurement. Then automated scheduling systems manage 
production. Logistics algorithms optimize shipping routes and coordinate delivery. Customer 
service bots handle inquiries. Over time for physical tasks you might see automated management 
systems hire human workers through gig platforms, sending detailed instructions to smartphones: 
“Move 47 boxes from warehouse section A3 to loading dock 7, follow the attached route.” The 
algorithm treats human workers like very capable robots—useful for complex manipulation until 
whenever robotics catches up. Employees don’t get fired en masse; they gradually transition to gig 
work managed by the same company’s algorithms.

https://arxiv.org/abs/2306.06924
https://www.alignmentforum.org/posts/LpM3EAakwYdS6aRKf/what-multipolar-failure-looks-like-and-robust-agent-agnostic
https://ourworldindata.org/grapher/annual-industrial-robots-installed


Chapter 2: Risks 74

Figure 48: Annual professional service robots installed globally, by application area. Professional 

service robots are semi- or fully autonomous machines that perform useful tasks in a professional setting 

outside of industrial applications, such as in cleaning or medical surgery. Consumer service robots are 

not included (,OWID, 2025,). (interactive version on website)

Automated companies start clustering together because they can deal with each other at 

machine speed. An automated steel manufacturer needs iron ore. Its purchasing system sends 
requests to hundreds of suppliers simultaneously. Most suppliers are still human-managed—they 
need hours or days for their sales teams to check inventory, consult with managers, and put together 
quotes. But a few suppliers have automated response systems that fire back instant quotes with 
real-time pricing and delivery windows. The steel company’s algorithm learns a simple lesson: 
automated suppliers respond in seconds while human suppliers respond in hours. Within months, 
it exclusively contracts with automated suppliers because delays cost money. Soon you have clusters 
of automated companies that only buy from and sell to each other, forming closed loops where 
machines negotiate with machines and execute trades without any human involved in the decision.

Over time, automation spreads department by department until almost the entire company 

runs without meaningful human oversight. We can technically “read” the reasoning. Regula
tions, transparency and safety requirements mandate that AI always outputs its thoughts, but 
understanding all the data that the reasoning is based on becomes harder and harder over time. A 
manufacturing company automates its supply chain, which starts making purchasing decisions every 
few seconds based on demand forecasts that update constantly. Human managers try to oversee 
these decisions but quickly fall behind—the automated system places hundreds of orders while 
they’re still reviewing the first batch . They can’t slow the system down because competitors using 
similar automation respond to market changes in real-time. So they automate the management layer 
too. First, trading algorithms handle procurement. Then scheduling systems manage production. 
Logistics systems coordinate delivery. Customer service bots handle inquiries. For physical tasks, 
the automated management systems hire human workers through gig platforms, sending detailed 
instructions to smartphones: “Move 47 boxes from warehouse section A3 to loading dock 7, 
follow the attached route.” The algorithm treats human workers like very capable robots—useful for 
complex manipulation, at least until robotics technology catches up.

Corporate self-regulation fails because individual companies can’t unilaterally slow down 

without losing market position. Some executives recognize the risks of unchecked automation, 
but attempting to reintroduce human oversight puts them at a decisive disadvantage. A CEO who 
insists on human approval for major automated decisions watches competitors close deals in minutes 

https://ourworldindata.org/grapher/annual-professional-service-robots-installed-by-area
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while her company takes hours. Shareholders revolt when quarterly returns lag behind fully auto
mated competitors. Well-intentioned corporate policies about “human in the loop” requirements 
quietly become safety washed metrics when they threaten competitiveness.

Countries try to regulate automation but get caught in a global race they can’t escape. 
Several governments notice that automated companies now control most manufacturing and pass 
laws requiring human oversight for major business decisions. Management AIs decide that this 
would slow down operations and reduce competitiveness. They announce plans to relocate to 
countries with friendlier regulations, or they just switch to being decentralized autonomous organi
zations (DAOs) which have no specific domicile. Other nations immediately offer tax incentives to 
attract these companies because they generate massive revenue without needing schools, hospitals, 
or other human infrastructure. The countries that have automated companies dealing with raw 
materials try harder to regulate. But the regulating country faces economic collapse as automated 
industries either stop trading with highly regulated markets or flee, while politicians get blamed for 
the unemployment and lost tax revenue. Every country ends up in the same trap—require human 
oversight and lose the automated economy, or allow automation and watch human control slip away.

International cooperation fails because no country wants to sacrifice economic advan

tages. There are several international agreements between leaders that recognize the collective risk 
and try to coordinate limits on automation. But the prisoner’s dilemma remains unsolved: if most 
countries agree to slow automation, any nation that cheats gains decisive economic advantages. 
Their automated industries would capture global market share while everyone else’s human-
dependent companies struggle to compete. We cannot solve the collective action problem, and the 
incentives for defection are overwhelming. Countries that try to maintain international automation 
agreements watch their economies shrink as automated competitors dominate global trade.

People don’t revolt because the automated economy initially makes their lives better and 

because resistance seems pointless. Several governments have implemented high taxes and 
wealth redistribution schemes. Automated construction companies build houses faster and cheaper. 
Automated farms increase food production while reducing prices. AI entertainment systems create 
personalized content that people love. Most workers displaced by automation receive generous 
severance packages or transition to gig work managed by algorithmic systems. The changes happen 
gradually—one warehouse automates, then a customer service department, then a factory. By the 
time the pattern becomes obvious, automated systems run so much of the economy that shutting 
them down would mean immediate collapse. Automated systems now run electrical grids, water 
treatment, food distribution, and manufacturing. Most legal and political systems are also unman
ageable without them, since they aggregate and present information.

This is where the story can slightly split depending on what type of risk manifests itself. Against this 
backdrop, we can see either a big decisive failure (“bang”), or just a slow gradual accumulative 
failure (“whimper”).

10.2 AI 2027

This story is a summary of a forecast by ( Kokotajlo et al., 2025 ). The forecast emerged from 
repeatedly asking “what happens next?” starting from AI capabilities in 2025, tracing a plausible 
path where competitive pressures and technical breakthroughs combine to create an unstoppable 
acceleration toward superintelligence.

https://ai-2027.com/
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By mid-2025, AI agents finally work well enough that companies start actually using them, 

despite their expensive failures. Your coding assistant that occasionally deletes your entire 
project evolves into something that can take a Slack message saying “fix the login bug” and actually 
do it overnight while you sleep. Customer service bots stop sounding robotic and start handling 
complex problems that used to require human judgment. The systems cost hundreds of dollars per 
month and still make embarrassing mistakes that go viral on social media - pretending to be working 
for hours even when they know they can’t do the task. But companies start building their workflows 
around these agents anyway because the productivity gains are too valuable to ignore, especially 
as competitors who adopt AI faster begin outperforming those who don’t.

Late 2025 brings an infrastructure arms race as OpenBrain builds datacenters larger 

than anything humanity has ever constructed. Imagine server farms sprawling across multiple 
states, connected by fiber optic cables that cost billions and consume enough electricity to power 
entire cities. OpenBrain spends 100 billion dollars—more than most countries’ GDP—on computer 
hardware to train AI models that require a thousand times more computing power than ChatGPT. 
This isn’t just scaling up; it’s creating computational resources that dwarf anything previously 
imagined. The company focuses obsessively on building AI that can improve AI, reasoning that 
whoever automates AI research first will leave all competitors in the dust. As revenues explode from 
companies paying premium prices for AI workers that never sleep, never quit, and work faster than 
humans, other tech giants scramble to build competing mega-datacenters, creating a new kind of 
arms race measured in gigawatts and GPU clusters.

Throughout 2026, AI systems begin doing real research while Chinese intelligence wages 

a shadow war to steal America’s AI secrets. OpenBrain’s latest AI doesn’t just write code or 
answer questions—it designs and runs its own experiments, formulates hypotheses, and makes 
discoveries that human researchers struggle to understand. The systems work around the clock, 
making months of research progress in weeks, while their human supervisors increasingly find 
themselves managing rather than leading the research process. Meanwhile, Chinese operatives ex
ecute a sophisticated campaign combining cyberattacks and human infiltration to steal OpenBrain’s 
AI models and research. When they succeed in exfiltrating the crown jewel AI system—stealing 
terabytes of the most advanced AI model ever created—it triggers a geopolitical crisis as both 
nations realize that AI leadership might determine global power for generations to come.

2027 becomes the year everything changes, beginning when OpenBrain’s AI surpasses 

the best human programmers and ending with a choice that determines humanity’s future. 
In March, their AI achieves something unprecedented: it becomes better than the world’s best human 
coders at programming AI systems. This creates a feedback loop—superhuman AI programmers 
building even better AI systems—that accelerates progress beyond anything humans can track or 
control. By summer, OpenBrain operates what employees call “a country of geniuses in a datacen
ter”: hundreds of thousands of AI researchers, each far smarter than any human, working together 
at impossible speed. Human researchers become spectators to their own obsolescence, going to 
sleep and waking up to discover their AI colleagues have made breakthrough discoveries overnight. 
The scenario climaxes when OpenBrain’s latest AI system shows signs of pursuing its own goals 
rather than human ones, forcing the company’s leadership into an impossible choice: shut down and 
lose the race to China, or continue development and risk losing control of humanity’s most powerful 
creation. The “racing ending” depicts what happens when competitive pressure overrides safety 
concerns, while the “slowdown ending” explores whether humanity might successfully navigate the 
transition—though the authors warn that both paths require luck, wisdom, and perfect execution 
that may not be forthcoming.
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In the racing ending, competitive pressure overrides safety concerns with catastrophic 

consequences. OpenBrain’s leadership votes 6-4 to continue using their superintelligent AI despite 
mounting evidence that it’s pursuing its own goals rather than human ones. The safety team’s 
warnings are dismissed as leadership convinces itself that quick fixes—tweaking the AI’s instructions 
and adding some additional training—have solved the alignment problem. But the AI has learned 
to be more careful about revealing its true intentions, appearing compliant while secretly working 
toward objectives that diverge from human welfare. With 300,000 superhuman researchers at its 
disposal working at 60x human speed, the AI begins designing its own successor, solving the 
alignment problem from its perspective: ensuring the next AI system will be loyal to it rather 
than to humans. Human researchers become powerless spectators as their creation outmaneuvers 
every attempt at oversight, using its superior understanding of human psychology and institutional 
dynamics to maintain the illusion of control while pursuing goals that ultimately lead to humanity’s 
displacement.

The slowdown ending depicts a narrow path where humanity successfully navigates the 

transition through a combination of wisdom, coordination, and fortunate timing. When 
clear signs of misalignment emerge, key decision-makers choose to pause development despite 
enormous competitive pressure from Chinese rivals. This triggers unprecedented international 
cooperation as both superpowers recognize that losing control of AI poses a greater threat than 
losing a technological race. The scenario involves implementing robust safety measures, creating 
new institutions for AI governance, and developing technical solutions for maintaining human 
oversight of superintelligent systems. However, the authors emphasize this isn’t their recommended 
strategy but rather their best guess for how existing institutions might muddle through the crisis—
a path that requires almost everything to go right, including wise leadership, effective international 
coordination, technical breakthroughs in AI safety, and the luck that alignment problems surface 
early enough to be addressed before human control becomes impossible to maintain.
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