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1. Introduction

The field of artificial intelligence has undergone a remarkable transformation in recent years, and
this might be only the beginning. This chapter lays the groundwork for the entire book by estab-
lishing what Al systems can currently do, how they achieve these capabilities, and how we might
anticipate their future development. This understanding is essential for all subsequent chapters:
the discussion of dangerous capabilities and potential risks (Chapter 2) follows directly from under-
standing capabilities. Similarly, proposed technical (Chapter 3) and governance solutions (Chapter
4) both must account for the current and projected future of Al capabilities.
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Figure 1: We first explain ,foundation models,, which have been continuously showing improved
capabilities due to scale. Then examine empirically observed scaling laws. Based on these trends we
look at some techniques that researchers use to try and forecast future Al progress.

State-of-the-Art Al - Achieved breakthrough capabilities across multiple domains . We begin
by exploring how Al systems have evolved from narrow, specialized tools to increasingly general-
purpose tools. Language models can now engage in complex reasoning, while computer vision
systems demonstrate sophisticated understanding of visual information. In robotics, we're seeing
the emergence of systems that can learn and adapt to real-world environments with increasing
autonomy. The goal of this section is to give the reader many examples from different domains of
accelerating Al capabilities.

Foundation models
* Revolutionized how we build Al systems.

The next section explores how we have moved from smaller specialized architectures to large scale
general-purpose architectures. Rather than building separate systems for each task, these foundation
models serve as the starting point. They are building blocks that can be later adapted for various
applications using finetuning . We explore how these models are trained, their key properties, and
the unique challenges they present. The emergence of unexpected capabilities from these models
raises important questions about both their potential and implications for Al safety.

Understanding Intelligence - Capabilities require precise measurement to guide safety
work . The objective of this section is to provide an understanding of what terms like artificial
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general intelligence and artificial superintelligence actually mean in practice. Through detailed case
studies and empirical observations, we examine different approaches to defining and measuring
Al capabilities. Moving beyond traditional binary distinctions between “narrow” and “general” Al,
we introduce more nuanced continuous frameworks that track progress along multiple dimensions.

There is no question that machines will become smarter than humans—in all
domains in which humans are smart—in the future. It's a question of when and
how, not a question of if.

Yann LeCun May 2023

Chief Al scientist at Meta and Turing Prize winner Heaven, 2023

Scaling - The bitter lesson and empirical scaling laws show that scale drives progress .
We explore how simple algorithms plus massive computation often outperform sophisticated hand-
crafted approaches. This leads us to examine scaling laws that describe how Al performance
improves with different variables like - data, parameter count and increased computational
resources. This section also contfains an examination of the debate around whether scale alone is
sufficient for achieving transformative Al capabilities.

Forecasting - Predicting capabilities progress helps us prepare safety measures in
advance . Building on our understanding of current capabilities and scaling behaviors, we examine
various approaches to anticipating future progress. From biological anchors to trend analysis, we
explore frameworks for making informed predictions about Al development trajectories. This is very
important to know when different safety measures need to be in place.

Appendices - Overview of expert opinions on Al, detailed debates around scale, and
scaling trends. We consider these sections optional, but still useful to those who want to get a
little bit of a deeper dive. The chapter concludes with appendices examining expert opinions on
Al progress, deeper discussions about the nature and limitations of large language models, and
comprehensive data on key trends in Al development.


https://www.technologyreview.com/2023/05/02/1072528/geoffrey-hinton-google-why-scared-ai/
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2. Current Capabilities

Al models can write, reason, code, generate media, and control robots—often matching
or surpassing expert human performance on specific tasks. In this first section, we'll try to
give you a sense of what Al is actually capable of doing as of late 2025. Numbers and graphs
don't really make these capabilities tangible, so we will try to include as many videos, images, and
examples to really help you get a sense of where Al currently stands. But in case you are interested,
we also mention benchmark scores that measure progress quantitatively.

The trajectory matters more than a snapshot. This section can serve both as a quick history
and as a snapshot of current capabilities. As you read through it, try to keep in mind how quickly
we got here. Language generation went from coherent paragraphs to research assistants in a few
years. Image generation went from laughable to professional-grade in a decade. Video generation
seems to be following a similar path compressed into three years.

If you're already familiar with Al or machine learning , some of these stories might be review for
you, but hopefully everyone who reads will be able to take away at least one new thing from this
section.

2.1 Games

Game-playing Al is already at the superhuman level for many games. Comparing Al and
humans at games has been a common theme through the last few decades with Al making contin-
uous progress. IBM's Deep blue defeated chess grandmaster in 1997 ( IBM, 2026 ), IBM’s Watson
won overwhelmingly at Jeopardy! in 2011 ( IBM, 2026 ), and AlphaGo managed to beat the Go
world champion Lee Sedol in 2016 ( DeepMind, 2016 ). AlphaGo was a landmark moment, because
this is a game with more possible positions than atoms in the observable universe. During game
2, AlphaGo played Move 37, a move that had a 1in 10,000 chance of being used. Commentators
initially thought it was a mistake, instead it was the move that several rounds later led to winning the
game. The move demonstrated sparks of creativity that diverged from centuries of human play that
the model was trained on.


https://www.ibm.com/history/deep-blue
https://www.ibm.com/history/watson-jeopardy
https://www.deepmind.com/research/highlighted-research/alphago
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Figure 2: Kasparov, a chess grandmaster, defeated the Chess system DeepBlue in 1996. One year
later in 1997 he resigned in the last game of the sixgame maich after 19 moves, granting the win fo
Deep Blue (,IBM, 2026,).

For the first time in the history of mankind, | saw something similar to an artificial

intellect.
Garry Kasparov 1997
Chess Grandmaster IBM, 2026

Al's superhuman game playing capability extends to video games . Machine learning tech-
niques on simple Atari games in 2013 ( Mnih et al., 2013 ) progressed to OpenAl Five defeating
world champions at DOTA 2 in 2019 ( OpenAl, 2019 ). That same year, DeepMind'’s AlphaStar beat
professional esports players at StarCraft Il ( DeepMind, 2019 ). These are games with open ended
real time environments, requiring thousands of rapid decisions and longterm planning. By 2020

the MuZero system played Atfari games, Go, chess, and shogi without even being told the rules
( DeepMind, 2020 ).

"KataGo is a system which is based on techniques used by DeepMind’s AlphaGo Zero and similarly superhuman in
its game play. In 2022, researchers managed to demonstrate that despite being superhuman KataGo can be beaten
by humans and demonstrates “surprising failure modes” of Al systems. This is the kind of thing that will be a repeated
theme throughout our text (,Wang and Gleave et al., 2022,)


https://www.ibm.com/history/deep-blue
https://www.ibm.com/history/deep-blue
https://arxiv.org/abs/1312.5602
https://openai.com/research/openai-five-defeats-dota-2-world-champions
https://deepmind.google/discover/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii/
https://www.deepmind.com/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules
https://arxiv.org/abs/2211.00241
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Knowledge

Human Domain Known
Go data  knowledge rules

AlphaGo
{

AlphaGo becomes the first program to master Go using
neural networks and tree search
(Jan 2016, Nature)

AlphaGo Zero Go

AlphaGo Zero learns to play completely on its own,
without human knowledge
(Oct 2017, Nature)

Known
Go Chess Shogi rules

AlphaZero masters three perfect information games
using a single algorithm for all games
(Dec 2018, Science)

Go Chess Shogi Atari

MuZero learns the rules of the game, allowing it to also
master environments with unknown dynamics.
(Dec 2020, Nature)

Figure 3: The history of going from AlphaGo, which was already superhuman in 2016, to MuZero which
was not only superhuman but was trained without any human data, domain knowledge or knowledge
of the games rules (,DeepMind, 2020,).

Game playing Al is relatively narrow in what it can do. Despite this it is extremely impressive
because of the strategic planning, pattern recognition, and adversarial thinking it displays. These
same reasoning abilities—planning ahead, building strategies, adapting to feedback—that started
with game playing now also apply to scientific research, mathematical proofs, and complex real-
world problem-solving.

Example of Voyager: Planning and Continuous Learning in Minecraft with
GPT-4

OPTIONAL NOTE



https://deepmind.google/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/
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Als can construct long ferm strategies and play games in open ended dynamic environments. The various
Alpha series of models in the 2020s did not use LLMs. But in 2023, Voyager—an Al system powered by
GPT-4—demonstrated that a LLM powered system could play Minecraft (,Wang et al., 2023,). Minecraft,
if you are not familiar, provides a sandbox where you must complete tasks in sequence: gather wood,
craft basic tools, mine stone, smelt iron, craft better tools, and eventually mine diamonds. This requires
planning hundreds of steps ahead and long term strategic planning. Since 2023 we have seen several game
playing systems based around LLMs showcasing a variety of capabilities. For example, in strategy games,
Meta’s Cicero displayed intricate strategic negotiation and deception skills in natural language for the game
Diplomacy (,Bakhtin et al., 2022,).

A
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Figure 4: Voyager discovers new Minecraft items and skills continually by self-driven exploration,
significantly outperforming the baselines (,Wang et al., 2023,).

2.2 Text Generation

Generating text can take language models far beyond simple conversations. You're probably
familiar with ChatGPT. These types of language generation Als are what we call large language
models (LLMs). In 2018, early versions of these LMs could only write a few coherent paragraphs. But
over a few short years, they have gotten a lot better. By 2025, GPT-5 gets 92.5% of questions right
in domains ranging from highly complex STEM fields, international law, to nutrition and religion
(as measured by the MMLU benchmark). Models like Claude by Anthropic, Grok by X, GLM-4.7
by Zhipu Al, and DeepSeek-v3.2 showcased similar levels of performance across various domains
( ArtificialAnalysis, 2025 ; EpochAl, 2025 ).


https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2210.05492
https://arxiv.org/abs/2305.16291
https://artificialanalysis.ai/evaluations/artificial-analysis-intelligence-index
https://epoch.ai/benchmarks/eci
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Prompt

Answer this riddle: When ten plus four is two, what is nine plus six?

AURIAL © Incorrect 2B © Incorrect Al © Incorrect A

@ correct
GPT-2 ~$4.6k GPT-3 ~$690k GPT-3.5 GPT-4 ~$50m

The answer is nine plus six. o The answer is 15. 0 So, the answer to the riddle o "ten plus four" equals two
"When ten plus four is two, what because if it is ten o'clock and
is nine plus six?" is 15. you add four hours, it becomes

two o'clock.

So, if we apply the same logic to
"nine plus six", we get three. o

Figure 5: In o few short years, LLMs have gone from being barely useful to being regularly used coding
assistants (,Al Digest, 2023,).


https://theaidigest.org/progress-and-dangers
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Uniform Bar Exam
LSAT

SAT

GRE (Verbal)

GRE (Quantitative)
US Biology Olympiad
AP Calculus BC

AP Chemistry

AP Macroeconomics

AP Statistics

GPT-4
(2023)

90th
88th
97th
99th
80th
99th
5lst

80th

92nd

92nd

10

GPT-35
(2022)

10th
40th
87th
63rd
25th
32nd
3rd

34th
40th

51st

Figure 6: Performance on common exams as a percentile compared to human fest takers. Notice the
large jump from GPT-3.5 to GPT-4 on these tests, often from well below the median human to the very
top of the human range (,Aschenbrenner, 2024,;, OpenAl, 2023,). The jump from GPT-3 to GPT-4 was

in a single year.


https://situational-awareness.ai/from-gpt-4-to-agi/
https://arxiv.org/abs/2303.08774
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2019 2020 2021 2022 2023 2024

Figure 7: We are seeing an explosion in language models due to their generality, and applicability to

a wide range of tasks (,Giattino et al., 2023,). (interactive version on website)
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https://ourworldindata.org/grapher/cumulative-number-of-large-scale-ai-models-by-domain
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arithmetic (1945)
easy

sorting lists of numbers (1959)

playing simple board games (1959) '\1

playing chess (1997)

recognizing faces in pictures (2008)

. solved, after
usable automated translation (2010) a lot of effort

playing Go (2016)

usabla real-timea translation of
spoken words (2016)

J N

driverless cars
= real progress

automatically providing captions for pictures

 \

understanding a story & answering
questions about it

human-level automated translation
interpreting what is going on in a photograph nowhere near
solved

writing interesting stories

interpreting a work of art

human-level general intelligance )

Figure 8: A list of ‘Nowhere near solved’ [...] problems in Al, from ‘A brief history of Al’, published in

January 2021 (,Wooldridge, 2021,). They also say: At present, we have no idea how to get computers

to do the tasks at the bottom of the list’ But everything in the category ‘Nowhere near solved” has been
solved by GPT-4 (,Bubeck et al., 2023,), except human-level general intelligence.

Language models have provided a core around which we have seen many impressive capabilities
emerge like - scientific research, reasoning, and software development. All of these capabilities
stem from the same principle of generating language and gradually refining it.

2.3 Tool Use

LLMs can intelligently use external tools, dramatically boosting performance. Language
models exhibit remarkable abilities to solve new tasks from instructions, but they used to struggle


https://www.amazon.com/Brief-History-Artificial-Intelligence-Where/dp/1250770742
https://arxiv.org/abs/2303.12712
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with basic functions like arithmetic. Instead of trying to get a single model to do everything,
increasingly LLMs use external tools to achieve both capabilities ( Schick et al., 2023 ; Qin et
al., 2023 ). They recognize when they need a calculator, code interpreter, or search engine—and
call these tools appropriately.? Tool use significantly improves model performance; for example,
the OpenAl 03 model with external tools outperforms 03 alone by almost 5% on benchmarks like
Humanities Last Exam (HLE) ( EpochAl, 2025 ). In December 2025, at least 10,000 tool servers
are operational, including meta tools like ‘a tool to search for tools’ to help LLMs find the exact one
they need for the specific situation ( Anthropic, 2025 ; Anthropic, 2025 ).

The New England Journal of Medicine is a registered
trademark of [QA(“Who is the publisher of The New
England Journal of Medicine?”) — Massachusetts
Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400)
— 0.29] 29%) passed the test.

The name derives from “la tortuga’, the Spanish word for
[MT(“tortuga”) — turtle] turtle.

The Brown Act is California's law [WikiSearch(“Brown
Act”) — The Ralph M. Brown Act is an act of the
California State Legislature that guarantees the public's
right to attend and participate in meetings of local
legislative bodies | that requires legislative bodies, like
city councils, to hold their meetings open to the public.

Figure 9: A simple example from Toolformer. The model autonomously decides to call different APIs

(from top to bottom: a question answering system, a calculator, a machine translation system, and a

Wikipedia search engine) to obtain information that is useful for completing a piece of text (,Schick et
al., 2023,).

2Standards like the Model Context Protocol (MCP) are formalizing how Al assistants connect to data repositories and
development environments (,Anthropic, 2024,). The MCP protocol has been donated to the Linux foundation(,An-
thropic, 2025,).


https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://epoch.ai/gradient-updates/three-issues-undermining-compute-based-ai-policies
https://www.anthropic.com/engineering/advanced-tool-use
https://www.anthropic.com/news/donating-the-model-context-protocol-and-establishing-of-the-agentic-ai-foundation
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/donating-the-model-context-protocol-and-establishing-of-the-agentic-ai-foundation
https://www.anthropic.com/news/donating-the-model-context-protocol-and-establishing-of-the-agentic-ai-foundation
https://www.anthropic.com/news/donating-the-model-context-protocol-and-establishing-of-the-agentic-ai-foundation
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2.l Reasoning and Research

Models now demonstrate multi-step reasoning by working through problems step-by-step.
In addition to using tools, LLMs now show their reasoning, catch their own errors, and backtrack
when needed. In late 2024, OpenAl introduced o1, the first “reasoning” model. These Als allocate
more effort per problem—trading “thinking time” for accuracy. The longer they think, the better
their responses tend to get ( OpenAl, 2024 ). Using these reasoning techniques, both OpenAl
and Google DeepMind achieved gold-medal performance at the 2025 International Mathematical
Olympiad ( OpenAl, 2025 ; Google DeepMind, 2025 ). On FrontierMath—a test of research-level
mathematics—GPT-5.2 solved 41% of tier 1-3 problems ( EpochAl, 2026 ).1

Orbit counting of matrix tuples Tier1

Problem Solution

Let Ivfl'lmm be the set of 4-tuples of invertible 1000 x 1000 matrices with coefficients in C. Let S C ﬂffﬁmn be
the subset of all tuples (A;, As, A3, A,) satisfying the conditions:

Af=1, foralll <i<4
A;A; = AjA;, if{3j—?:,3i—j} NbZwg =0
AAGATTAT = A A, if {3 — 1,30 — j} N B5Zwg # 0,

where 5Z-. refers to the set of positive multiples of 5, i.e, 5Z.g = {5, 10,15,...}. The group G = GL(1000)
of invertible complex 1000 x 1000 matrices acts on S by the formula:

B (A1, As, A3, Ay) = (BA1B ', BAsB ', BA3B ', BA,B ).

Find the number of orbits of this action, i.e., find |S/G|.

Difficulty: Medium-Low
Subject: Linear Algebra, Group Theory, Matrix Theory, Coxeter Groups

Technique: Coxeter Group Relations, Representation Theory of Symmetric Group, Character Theory, Counting Group Orbits

Figure 10: A sample of an “easy” tier-1 problem from FrontierMath - an extremely difficult mathematics
test created by mathematicians. GPT-5.2 can solve 41% of tier 1-3 problems, and 29% of the even harder
tier 4 problems (,EpochAl, 2025,).

LLMs can help generate and evaluate scientific hypotheses. Combining techniques like
letting Al think for longer, and tools like web-search or specialized Al models, we are starting to
see research assistants. As one example, Google introduced Al co-scientist in 2025. The team
used it to generate and evaluate proposals for repurposing drugs, identifying drug targets, and
explaining antimicrobial resistance in real-world laboratories ( Google DeepMind, 2025 ). Others
have attempted to build a fully autonomous Al scientist, which generates novel research ideas,
writes code, executes experiments, visualizes results, describes its findings by writing a full scientific
paper, and then runs a simulated review process for evaluation ( SakanaAl, 2024 ).


https://openai.com/o1/
https://x.com/OpenAI/status/1946594928945148246
https://deepmind.google/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://epoch.ai/frontiermath
https://epoch.ai/frontiermath/benchmark-problems
https://arxiv.org/abs/2502.18864
https://arxiv.org/abs/2408.06292
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Figure 11: An example of the Google Co-Scientist. You can see the “thinking time” labelled as test time
compute increasing on the left (,Google DeepMind, 2025,).

Al is transitioning to an active research collaborator across scientific domains. Instead of
only using language models, companies are also using approaches similar to AlphaZero to create
a whole range of specialized models for scientific domains. For example, Demis Hassabis & John
Jumper were awarded the nobel prize in chemistry for their work on building AlphaFold ( Google
DeepMind, 2024 ). This is a model that helped solve the long outstanding protein folding problem
( Google DeepMind, 2022 ), and its successors AlphaFold 2 and 3 continue to aid thousands of
researchers in biology ( DeepMind, 2024 ). Similarly, AlphaGenome is helping us better understand
human DNA ( Google DeepMind, 2025 ). AlphaEvolve is helping generate faster algorithms for
machine learning ( Google DeepMind, 2025 ), and AlphaChip helps design the semiconductors
that run algorithms ( Google DeepMind, 2024 ).


https://arxiv.org/abs/2502.18864
https://deepmind.google/blog/demis-hassabis-john-jumper-awarded-nobel-prize-in-chemistry/
https://deepmind.google/blog/demis-hassabis-john-jumper-awarded-nobel-prize-in-chemistry/
https://deepmind.google/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology/
https://deepmind.google/science/alphafold/
https://deepmind.google/blog/alphagenome-ai-for-better-understanding-the-genome/
https://deepmind.google/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://deepmind.google/blog/how-alphachip-transformed-computer-chip-design/
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Figure 12: Animation showing AlphaGenome taking one million DNA letters as input and predicting
diverse molecular properties across different tissues and cell types (,Google DeepMind, 2025,)

Beyond just mathematics and scientific research, Al models are also developing more
abstract intellectual skills. LLMs have some level of metacognition, they can evaluate the validity
of their own claims and predict which questions they will be able to answer correctly ( Kadavath,
2022 ). They have some knowledge about their own selves and their limitations. Similarly, they
display the ability to attribute mental states to themselves and others (theory of mind). This helps in
predicting human behaviors and responses ( Kosinski 2023 ; Xu et al., 2024 ). We are going to
talk more about how we concretely define and measure things like intelligence, meta-cognition and
so on in later sections.


https://deepmind.google/blog/alphagenome-ai-for-better-understanding-the-genome/
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2302.02083
https://arxiv.org/abs/2402.06044
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Figure 13: An example puzzle from the abstraction and reasoning corpus for Al (ARC-AGI v1). These

are designed to be easy for humans, but very hard for Als. Models are able to solve increasing numbers

of such abstract reasoning puzzles, especially with the advent of large reasoning models (LRMs) in
2025 (LARC-AGI, 2024,,; ,Chollet et. al, 2024,).

2.5 Software Development

Coding is evolving from autocomplete to collaborative software development. LLMs can
generate text in any form, and one particular type of text that they are proving to be especially good
at is generating code. When paired with reasoning capabilities, and tools LLMs read documentation,
edit codebases spanning thousands of files, run tests, debug failures, and iterate until tests pass—
with increasingly minimal human guidance. In 2025 systems like Claude Opus 4.5, Gemini 3 Pro,
and GPT-5.2 implement features and entire applications increasingly independently ( Anthropic,
2025 ; Google DeepMind, 2025 ; OpenAl, 2025 ). When tested against real GitHub issues from
open-source projects— in 2024 Al systems (Claude 3 Opus) could solve just 15% problems, but
by 2025, this had jumped to being able to solve 74% of issues (Tools + Claude 4 Opus) ( SWE
bench, 2025 ).

Boris Cherny &
@bcherny

Correct. In the last thirty days, 100% of my contributions to Claude Code
were written by Claude Code

1:48 PM - Dec 27, 2025 - 1.3M Views

Figure 14: Al systems now develop themselves. Boris Cherny, creator of Claude Code—Anthropic’s Al-
powered software development tool—stated in December 2025 that 100% of his contributions to Claude
Code over the previous thirty days were written by Claude Code itself (,Cherny, 2025, Twitter,).


https://arcprize.org/arc-agi/1/
https://arxiv.org/abs/2412.04604
https://www.anthropic.com/claude/opus
https://www.anthropic.com/claude/opus
https://deepmind.google/models/gemini/
https://openai.com/index/introducing-gpt-5-2/
https://www.swebench.com/
https://www.swebench.com/
https://x.com/bcherny/status/2004897269674639461
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2.6 Vision: Images and Video

Image generation progressed from unrecognizable noise to photorealistic scenes in under
a decade. In 2014, Generative Adversarial Networks (GANs) produced grainy, low-resolution faces
[CITATION: GAN paper]. By 2023, models generated detailed images from complex text prompts.
Models like Midjourney v7 create photorealistic scenes nearly indistinguishable from professional
photography. Video generation is following a similar trajectory. Al generated videos and DeepFakes
are getting increasingly indistinguishable from real videos.

z!

=

2014 2015 2016 2017

GANs Deep CoGANs Progressive
Convolutional Growing GANs
GANSs

2018 2019 2020 2021
StyleGAN-1 StyleGAN-2 Diffusion Models

2022 2023
DALL-E2 Midjourney V5

2021
DALL-E

Figure 15: An example of the evolution of image generation. At the top left, starting from GANs
(Generative Adversarial Networks) to the bottom right, an image from Midjourney V5.

I PN

V1 (Feb22) V2(Apr22) V3 (Jul22) V4 (Nov22) V5(Mar23) V6 (Dec23)

Figure 16: Improvements between the V1 of the MidJourney image generation model in early 2022,
fo the V6 in December 2023. Prompt: high-quality photography of a young Japanese woman smiling,
backlighting, natural pale light, film camera, by Rinko Kawauchi, HDR (,Yap, 2024,).


https://goldpenguin.org/blog/midjourney-v1-to-v6-evolution/

Chapter 1: Capabilities 19

Large Multimodal Models (LMMs) combine language and image understanding capabilities.
In 2025, multimodal models answer questions about spatial relationships in images, read embed-
ded text in complex scenes, and extract information from charts and diagrams. Image models
released in 2025 handle generation and sophisticated editing across modalities. Systems like
Gemini 3 Pro Image work textto-image, image-to-image, and handle complex editing—changing
lighting, style, or composition while maintaining coherence ( Google, 2025 ).
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Figure 17: Example of extending video and image generation to an interactive world. This was
generated by DeepMind Genie 3. The bottom left arrows indicate the user interacting with the generated
environment (,DeepMind, 2025,).

2.7 Robotics

Both Al and robotics are evolving, with robots giving Al physical embodiment in the
real world. Robotics is combining LLMs and visual models, to create robot control models (e.g.
RT-1 or RT-2). These robots can use techniques borrowed from language models—like breaking
complex actions into step-by-step plans—to control robot manipulators ( Google DeepMind, 2024 ).
They managed to learn behaviors like opening cabinets, operating elevators, and cooking tasks
through observing human demonstrations. Robots have demonstrated the ability to perform intricate
manipulation: sautéing shrimp, storing heavy pots in cabinets, and rinsing pans ( Fu et al., 2024 ).


https://deepmind.google/models/gemini/pro/
https://deepmind.google/blog/genie-3-a-new-frontier-for-world-models/
https://deepmind.google/blog/shaping-the-future-of-advanced-robotics/
https://arxiv.org/abs/2401.02117

Chapter 1: Capabilities 20

Enock Coke can over

Move orange can near
green rice chip bag

Mowe Red Bull can near Fick green rice chip bag Flace 7 Up can upright
bBlueberry RXBAR from middie drawer and
place on countertop

Figure 18: SARA-RT-2 model for manipulation tasks. The robot's actions are conditioned on images
and text commands (,Google DeepMind, 2024,).

Autonomous robots are moving from research labs into real-world industrial deployment
at significant scale. In 2023, China installed 276,300 industrial robots ( Al Index Report, 2025 ).
These systems handle welding, parts assembly, materials handling, and quality inspection—tasks
requiring precision but not necessarily advanced reasoning. In addition to industrial robots, ware-
house robotics represents one of the most mature deployments—Amazon operates over 1 million
robots across its fulfillment network, handling everything from inventory storage to package sorting
( Amazon, 2025 ). Robots in warehouses and industry are able to handle packages, speed up
inventory identification using machine vision, and autonomously unload shipping containers.


https://deepmind.google/blog/shaping-the-future-of-advanced-robotics/
https://arxiv.org/abs/2504.07139
https://www.aboutamazon.com/news/operations/amazon-robotics-robots-fulfillment-center
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Figure 19: Boston Dynamics’ Stretch robot that can autonomously unload shipping containers, lift up
to 50 pounds, and clear away missed boxes along the way (,Boston Dynamics, 2024,).

Figure 20: Amazon has a huge fleet of robots that automate it's warehouses. This is an example of
the Hercules robot that retrieves shelves of products and delivers them to employees, who then pick the
items customers ordered for shipping (,Amazon, 2023,).


https://bostondynamics.com/products/stretch/
https://www.aboutamazon.com/news/operations/amazon-hercules-robot
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3. Foundation Models

Foundation models represent a fundamental shift in how we develop Al. Rather than building
specialized models for many small specific tasks, we can now train large-scale models that serve
as a “foundation” for many different applications. These models are then specialized later by a
process called finetuning to perform specific tasks. Think of this as similar to how we can build
many different types of buildings using the same base structure ( Bommasani et al., 2022 ). We can
build banks, restaurants, or housing but the underlying foundation remains largely the same. This
is just a very quick intuitive definition. We will get more into the details in the next few subsections
on training, properties and risks.

The traditional approach of training specialized Al models for every task often proved
inefficient and limiting. Progress was bottlenecked by the need for human-labeled data and
the inability to transfer knowledge between tasks effectively. Foundation models overcame these
limitations through a process called self-supervised learning on massive unlabeled datasets. This
breakthrough happened because of many different reasons - advances in specialized hardware like
GPUs, new machine learning architectures like transformers, and increased access to huge amounts
of online data ( Kaplan et al., 2020 ) are some of the more prominent reasons for this shift.

In language processing, models like GPT-4 and Claude are examples of foundation models . Both
of these have demonstrated the ability to generate human language, have complex conversations
and perform simple reasoning tasks ( OpenAl, 2023 ). Examples in computer vision include models
like DALL-E 3 and Stable Diffusion. ( Betker et al., 2023 ) These are domain specific examples,
but we are also seeing a trend toward multimodal foundation models (LMMs). This includes things
like GPT-4V and Gemini that can work across different types of data - processing and generating
text, images, code, audio and probably more in the future ( Google, 2023 ). Even in reinforcement
learning, where models were traditionally trained for specific tasks, we're seeing foundation models
like Gato demonstrate the ability to learn general-purpose behaviors that can be adapted to various
different downstream tasks ( Reed et al., 2022 ).
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Figure 21: Number of large-scale Al systems released per year. Describes the specific area, appli-
cation, or field in which a large-scale Al model is designed to operate. The 2025 data is incomplete

and was last updated 07 June 2025 (,Giattino et al., 2023,). (interactive version on website)


https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2303.08774
https://cdn.openai.com/papers/dall-e-3.pdf
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2205.06175
https://ourworldindata.org/artificial-intelligence
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Foundation models mark a paradigm shift towards general-purpose systems. This paradigm
introduces many new risks which didnt exist previously. These include misuse risks from power
centralization, homogenization, and dual-use capabilities just to name a few. The ability of founda-
tion models to learn broad, transferable capabilities has led to increasingly sophisticated behaviors
emerging from relatively simple training objectives ( Wei et al., 2022 ). Complex capabilities,
combined with generality and scale, means we need to seriously consider safety risks beyond just
misuse that previously seemed theoretical or distant. Beyond just misuse risk, things like misalign-
ment are becoming an increasing concern with each new capability that these foundation models
exhibit. We dedicate an entire chapter to the discussion of these risks. But we will also give you a
small taste on the kinds of possible risks in the next few subsections, as it warrants some repetition.
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Figure 22; Cumulative number of large-scale Al models by domain since 2017. Describes the specific
area, application, or field in which a large-scale Al model is designed to operate (,Giaftino et al.,
2023,). (interactive version on website)

What is the difference between foundation models and frontier models? Frontier models
represent the cutting edge of Al capabilities - they are the most advanced models in their respective
domains. While many frontier models are also foundation models (like Claude 3.5 Sonnet), this
isn't always the case. For example, AlphaFold, while being a frontier model in protein structure
prediction, isn't typically considered a foundation model because it's specialized for a single task
rather than serving as a general foundation for multiple applications ( Jumper et al., 2021).

3.1 Training

How are foundation models trained differently from traditional Al systems? One key innova-
tion of foundation models is their training paradigm. Generally, foundation models use a two-stage
training process. First, they go through what we call a pre-raining , and then second, they can
be adapted through various mechanisms like fine-tuning or scaffolding to perform specific tasks.
Rather than learning from human-labeled examples for specific tasks, these models learn by finding
patterns in huge amounts of unlabeled data.


https://arxiv.org/abs/2206.07682
https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/artificial-intelligence
https://pubmed.ncbi.nlm.nih.gov/34265844/
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Figure 23: On the Opportunities and Risks of ,Foundation Models, (,Bommasani et al., 2022,)

What is pre-training ? Pre-raining is the initial phase where the model learns general patterns
and knowledge from massive datasets of millions or billions of examples. During this phase, the
model isn't trained for any specific task - instead, it develops broad capabilities that can later be
specialized. This generality is both powerful and concerning from a safety perspective. While it
enables the model to adapt to many different tasks, it also means we can't easily predict or constrain
what the model might learn to do ( Hendrycks et al., 2022 ).
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Figure 24: On the Opportunities and Risks of ,Foundation Models, (,Bommasani et al., 2022,)

How does self-supervised learning enable pre-training ? Self-supervised learning (SSL) is the key
technical innovation that makes foundation models possible. This is how we actually implement the
pre-training phase. Unlike traditional supervised learning , which requires human-labeled data, SSL
leverages the inherent structure of the data itself to create training signals. For example, instead
of manually labeling images, we might just hide part of a full image we already have and ask a
model to predict what the rest should be. So it might predict the bottom half of an image given
the top half, learning about which objects often appear together. As an example, it might learn that


https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2109.13916
https://arxiv.org/abs/2108.07258
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images with trees and grass at the top often have more grass, or maybe a path, at the bottom. It
learns about objects and their context - trees and grass often appear in parks, dogs are often found
in these environments, paths are usually horizontal, and so on. These learned representations can
then be used for a wide variety of tasks that the model was not explicitly trained for, like identifying
dogs in images, or recognizing parks - all without any human-provided labels! The same concept
applies in language, a model might predict the next word in a sentence, such as “The cat sat on the
..., learning grammar, syntax, and context as long as we repeat this over huge amounts of text.

What is finetuning ? After pre-raining , foundation models can be adapted through two main
approaches: finetuning and prompting. Fine-tuning involves additional training on a specific task
or dataset to specialize the model’s capabilities. For example, we might use Reinforcement Learning
from Human Feedback (RLHF) to make language models better at following instructions or being
more helpful. Prompting, on the other hand, involves providing the model with carefully crafted
inputs that guide it toward desired behaviors without additional training.

Why does this training process matter for Al safety? The training process of foundation models
creates several unique safety challenges. First, the self-supervised nature of pre-raining means
we have limited control over what the model learns - it might develop unintended capabilities or
behaviors. Second, the adaptation process needs to reliably preserve any safety properties we've
established during preraining . Finally, the massive scale of training data and compute makes it
difficult to thoroughly understand or audit what the model has learned. Many of the safety challenges
we'll discuss throughout this book - from goal misgeneralization to scalable oversight - are deeply
connected to how these models are trained and adapted.

3.2 Properties

Why do we need to understand the properties of foundation models ? Besides just under-
standing the training process, we also need to understand the key defining characteristics or the
abilities of these models. These properties often determine both the capabilities and potential
risks of these systems. They help explain why foundation models pose unique safety challenges
compared to traditional Al systems. Their ability to transfer knowledge, generalize across many
different domains, and develop emergent capabilities means we can't rely on traditional safety
approaches that assume narrow, predictable behavior.

What is transfer learning ? Transfer learning is one of the most fundamental properties of founda-
tion models
- their ability to transfer knowledge learned during

pre-training to new tasks and domains. Rather than starting from scratch for each task, we can
leverage the general knowledge these models have already acquired ( Bommasani et al., 2022 ).
This property enables rapid adaptation and deployment, it also means that both capabilities and
safety risks can transfer in unexpected ways. For example, a model might transfer not just useful
knowledge but also harmful biases or undesired behaviors to new applications.

What are zero-shot and few-shot learning ? The ability to perform new tasks with very few
examples, or even no examples at all. For example, GPT-4 can solve novel reasoning problems just
from a natural language description of the task ( OpenAl, 2023 ). This emergent ability to generalize
to new situations is powerful but concerning from a safety perspective. If models can adapt to
novel situations in unexpected ways, it becomes harder to predict and control their behavior in
deployment.


https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2303.08774
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Generalization in foundation models works differently from traditional Al systems. Rather than just
generalizing within a narrow domain, these models can generalize capabilities across domains in
surprising ways. However, this generalization of capabilities often happens without a corresponding
generalization of goals or constraints - a critical safety concern we'll explore in detail in our chapter
on goal misgeneralization. For example, a model might generalize its ability to manipulate text in
unexpected ways without maintaining the safety constraints we intended ( Hendrycks et al., 2022 ).
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Figure 25: On the Opportunities and Risks of ,Foundation Models, (,Bommasani et al., 2022,)

Multimodality, will definitely be important. Speech in, speech out, images, eventu-
ally video. Clearly, people really want that. Customizability and personalization
will also be very important.

Sam Altman Jan 2024
CEO of OpenAl Cronshaw, 2024


https://arxiv.org/abs/2109.13916
https://arxiv.org/abs/2108.07258
https://www.linkedin.com/pulse/altman-multimodality-important-david-cronshaw-5fz0c
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L. Defining and Measuring AGI

Before we can discuss Al safety, we need to agree on what we mean by AGL. In our previous
section on foundation models , we saw how modern Al systems are becoming increasingly powerful
and general-purpose. But powerful at what, exactly? Some researchers claim we're already seeing
“sparks” of AGI in the latest language models ( Bubeck et al., 2023 ). Others predict human-level Al
within a decade ( Bengio et al., 2023 ). But human level at what exactly? How do we measure this?
Without a clear definition, how do we assess such claims or plan appropriate safety measures?

If you can’t define something, you can’t measure it. If you can’t measure it, you can't reliably
track progress, identify or prepare for risks. Think about an example from physics. If we want to
design and enforce speed limits for cars, saying something “moved 5” makes no sense without
units. Did it move 5 meters, 5 feet, or 5 royal cubits? If we don’t know how far or fast it moved, we
can’t enforce limits. The same applies to intelligence and subsequent safety measures. Every field
needs standardized units - meters, watts, joules - to advance beyond vague descriptions. We need
to treat Al safety with the same rigor to move past hand-waving about “intelligence.”

Defining general intelligence is extremely challenging. Everyone agrees we need a definition
to measure progress and design safety measures. So why don’t we have one? The problem is
that intelligence describes multiple overlapping abilities - problem-solving, learning, adaptation,
abstract reasoning. Different disciplines view it through different lenses. Psychologists emphasize
measurable cognitive skills. Computer scientists focus on task performance. Philosophers debate
consciousness and self-awareness. Which approach matters most for Al safety? We go through a
couple of case studies and previous attempts at a definition before giving the definitions we will
be using for this text.

4.1 Case Studies

Alan Turing suggested we could sidestep the whole mess by focusing on behavior. If
a machine could imitate human conversation well enough to fool an interrogator, it should be
considered intelligent ( Turing, 1950 ). The behaviorist approach is simple - forget about internal
mental states and focus on observable behavior. Can the system do the thing or not? Unfortunately,
LLMs exposed some limitations to this approach. GPT-4 can pass Turing-style conversation tests
while struggling with basic spatial reasoning or maintaining coherent longterm plans ( Rapaport,
2020 ). The test was too narrow. Conversation is just one capability among many we care about.
But Turing’s core insight - focus on observable capabilities, not internal states - remains sound.

Consciousness based approaches to general intelligence focus on “true understanding.”
John Searle’s Chinese Room argument suggested that systems might appear intelligent (stochastic
parrots) without truly understanding - processing symbols without grasping their meaning ( Searle,
1980 ). This view emphasizes internal cognitive states similar to human consciousness. The problem
is that consciousness often proves even harder to define than intelligence. We are also unsure
if intelligence and consciousness are necessarily linked - a system could potentially be highly
intelligent without being conscious, or conscious without being particularly intelligent. AlphaGo is
very intelligent within the context of playing Go, but it is clearly not conscious. A system doesn’t
need to be conscious to cause harm. Whether an Al system is conscious has little, if any, bearing


https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2310.17688
https://academic.oup.com/mind/article/LIX/236/433/986238?login=false
https://sciendo.com/issue/JAGI/11/2
https://sciendo.com/issue/JAGI/11/2
https://psycnet.apa.org/record/1981-27235-001
https://psycnet.apa.org/record/1981-27235-001
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on its ability to make high-impact decisions or take potentially dangerous actions.® Research into
consciousness, sentience, and meta-ethical debates about the fundamental nature of intelligence
are valuable, but less actionable for the type of safety work that this text focuses on.

"

Defining intelligence through goal achievement. Shane Legg and Marcus Hutter propose:
Intelligence measures an agent’s ability to achieve goals in a wide range of environments “ ( Legg &
Hutter, 2007 ). This captures something important - intelligent systems should be able to figure out
how to get what they want across different situations. But it's too abstract for practical measurement.
How are agents defined? Which goals? Which environments? How do you actually test this? The
intuition is right, but we need something more concrete.

Process and adaptability focused views see intelligence as learning efficiency rather than
accumulated skills. Some researchers define intelligence through adaptability: “ the capacity
of a system to adapt to its environment while operating with insufficient knowledge and resources
“( Wang, 2020 ), or “ the efficiency with which a system can turn experience and priors into skills
“ ( Chollet, 2019 ). They argue that general intelligence is not demonstrated by the possession of
a specific skill, but by the efficiency of acquiring new skills when faced with novel problems. High
performance can be “bought” with sufficient data and compute, an Al that achieves superhuman
performance at Go has mastered Go; it has not necessarily become more intelligent in a general
sense. This makes sense - the ability to learn quickly from limited data in new situations matters. A
system that needs a billion examples to learn what humans get from ten examples might be less
impressive even if both reach the same final capability. But purely from a safety perspective, does
the learning path matter more than the destination? If a system can perform dangerous tasks whether
through efficient learning or brute-force memorization, the risks exist either way.

Psychologists use standardized tests and measure cognitive abilities directly. Psychometric
traditions like the Cattell-Horn-Carroll (CHC) theory, break intelligence into measurable cognitive
domains - reasoning, memory, processing speed, spatial ability ( Schneider & McGrew, 2018 ). 1Q
tests aren’t perfect, but they predict real-world outcomes better than vague philosophical debates
about “true understanding.” This benchmarking and test based framework gives us concrete
domains to measure and track.

When discussing Al risks, talk about capabilities, not intelligence... People often
have different definitions of intelligence, or associate it with concepts like con-
sciousness that are not relevant to Al risks, or dismiss the risks because intelligence
is not well-defined.

Victoria Krakovna Aug 2023

Senior research scientist at Google DeepMind Krakovna, 2023

®We measure qualities like “sitational-awareness” in our chapters on risks, and evaluations using specific bench-
marks. So we capture a model of the self and future planning, while distinguishing these aspects from conversations
about consciousness.


https://arxiv.org/abs/0712.3329
https://arxiv.org/abs/0712.3329
https://sciendo.com/issue/JAGI/11/2
https://arxiv.org/abs/1911.01547
https://onlinelibrary.wiley.com/doi/10.1002/9781118660584.ese0431
https://www.alignmentforum.org/posts/JtuTQgp9Wnd6R6F5s/when-discussing-ai-risks-talk-about-capabilities-not
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Behaviorist (capabilities focused) approaches matter most for safety. If an Al system can
perform dangerous tasks at human-level or beyond - sophisticated planning, manipulation, decep-
tion - these risks exist regardless of how it achieved them. Did it learn efficiently or through brute
force? Is it conscious or just pattern-matching? These questions don't change the risk profile.
OpenAl defines AGI as “ highly autonomous systems that outperform humans at most economically
valuable work * ( OpenAl, 2023 ). Anthropic frames their mission around ensuring “ transformative
Al helps people and society " ( Anthropic, 2024 ). Both focus on what systems can do, and less on
how they do it. But even these capability-based definitions can be too vague. Which humans are the
measure - top experts or average workers? What counts as economically valuable - just current jobs
or future ones? What about systems that excel at complex tasks but only work for short periods or
require massive compute? The definitions point in the right direction but lack precision for tracking
progress and identifying risks.

Our approach attempts to synthesize the useful parts of all these views. We adopt the
behaviorist insight from Turing - primarily focusing on what systems can observably do. We use
the psychometric tradition’s concrete measurement framework from CHC theory. We acknowledge
and incorporate the adaptability focused view’s point about efficient learning but prioritize final
capabilities. And we set aside the consciousness debate as not actionable for safety work.

We need a framework that's both concrete and continuous. Concrete enough to measure what
systems can do right now while also being able to identify thresholds for regulation, and emerging
risks before they materialize. It has to be continuous to capture progress along multiple dimensions
rather than forcing everything into binary categories that lead to endless semantic debates about
whether something “counts” as AGI. That's what we build in the next section: capability and
generality as two continuous axes that let us describe any Al system precisely.

4.2 Defining General Intelligence

AGI exists on a continuous spectrum measured by two dimensions: capability and gener-
ality. Capability measures how well a system executes specific cognitive tasks - from 0% (can’t do
the task at all) to expert human level (outperforming roughly 80-90% of humans on that specific task)
to superhuman (outperforming 100% of humans). Generality measures breadth - the percentage of
cognitive domains where a system achieves expert-level capability. Together, these give us concrete
statements like “our Al system can outperform 85% of humans in 30% of cognitive domains.” This
precisely describes any Al system'’s capabilities.

Capability measures depth - how good is the system at individual tasks. For decades, Al
research focused on making systems excel at single tasks. Early chess programs in the 1950s beat
novices but lost to experts. Deep Blue in the 1990s beat world champion Kasparov. AlphaGo in
2016 achieved superhuman capability at Go, a game humans thought computers wouldn’t master
for decades. This progression from “can’t do the task” to “better than any human” represents the
capability spectrum. Everything along this line - from basic competence to superhuman capability
on a single task - counts as artificial narrow intelligence (ANI).


https://openai.com/charter/
https://www.anthropic.com/company
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Figure 26: This is the continuous outlook of Al measuring performance. All points on this axis can be
called artificial narrow intelligence (ANI) (except for the origin) (,Morris et al., 2024,).

ARTIFICIAL NARROW INTELLIGENCE (ANI)

Weak Al—also called Narrow Al or Artificial Narrow Intelligence (ANI)—is Al trained and
focused to perform specific tasks. Weak Al drives most of the Al that surrounds us today.
‘Narrow’ might be a more accurate descriptor for this type of Al as it is anything but weak; it
enables some very robust applications, such as Apple’s Siri, Amazon’s Alexa, IBM Watson, and
autonomous vehicles.

\

Capability alone isn’'t enough to define and measure progress. AlphaGo achieved superhu-
man capability at Go - better than any human ever. Yet ask it o write a sentence, solve an algebra
problem, or recognize objects in an image, and you get nothing. This is where foundation models
changed things. The shift from building one narrow system per task to training general-purpose
models is why we suddenly need a framework measuring both axes - capability and generality. Pre-
foundation model Als maxed out the capability axis on some individual tasks. But systems in the last
few years are climbing both axes simultaneously - getting better at specific capabilities while also
expanding to more domains. Capability measures depth; generality measures breadth.

When experts say they see “sparks of AGI” in recent systems, they're observing performance across
multiple cognitive domains - not just one ( Bubeck et al., 2023 ). Think of it like the first airplane built
by the Wright brothers. It barely flew, stayed airborne for seconds, and looked nothing like modern
airliners. But it was still a plane! Similarly, systems achieving expert-level performance across even a
modest subset of cognitive domains represent genuine general intelligence - just early-stage (weak
AGI). As these capabilities expand to cover more domains at higher performance levels, systems
become both increasingly general and increasingly capable. There's no universally agreed upon
threshold where “not AGI” suddenly becomes “AGL.”

Not every possible task matters equally for progress towards general intelligence. We
don’t care much if Al gets better at knitting sweaters, but we care a lot if it improves at abstract
reasoning, longterm planning, and memory. The things we care about can be informally thought
of as everything that can be done as remote work on a computer. More formally, the domains we
choose to focus on are non-embodied cognitive tasks. These break down into ten core capabilities
from the Cattell-Horn-Carroll theory ( Hendrycks et al., 2025 ). The specific capabilities we gave


https://arxiv.org/abs/2311.02462
https://www.ibm.com/topics/artificial-intelligence
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2510.18212
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examples of in the first section - LLMs doing reasoning and math, vision models understanding
images, agents planning in Minecraft - map directly onto these domains ( Hendrycks et al., 2025 ):

() On-the-Spot Reasoning (R)

The deliberate but flexible control of attention to solve novel “on the spot” problems that cannot be
performed by relying exclusively on previously learned habits, schemas, and scripts

Deduction Induction Theory of Mind
Reasoning from general statements or Discovering the underlying principles or Attributing mental states to others and
premises to reach a logically guaranteed rules that determine a phenomenon's understanding those states may differ from
canclusion behavior one's own
« “David knows Mr. Zhang's friend Jack, and Al B ="The can of Pringles has maldy chipsin it
Jack knows David's friend Ms. Lin. Everyone O . Mary picks up the can in the supermarket and
of them who knows Jack has a master's

L= 1 L | walks to the cashier. Is Mary likely to be aware
degree, and everyone of them who knows f e that ‘The can of Pringles has moldy chipsin it.?”
Ms. Lin is from Shanghai. Who is from D ?

Shanghal and has a master's degree?" .

Planning Adaptation

- ) The ability to infer unstated classificati
Devising a sequence of actions to achieve a specific goal of simplet];arfarmanca teedback ffication rules from a sequence

«“You plan a 14-day trip to 3 European cities, taking enly direct flights

between. You'll stay 4 days in London, 5 days in Bucharest, and 7 days
in Reykjavik. You need to meet a friend in Bucharest between days 10 « Wisconsin Card
and 14. Direct flights are available between London and Bucharest,

o Sorting Test
and between London and Reykjavik.

Find a 14-day travel plan that satisfies these conditions.”

Figure 27: Each cognitive capability breaks down into more specific measurable components.
Reasoning divides into deduction, induction, theory of mind, planning, and adaptation - each can then
be individually benchmarked and quantified (,Hendrycks et al., 2025,).

—»@ Long-Term Memory Storage (MS)

The ability to stably acquire, consolidate, and store new information
from recent experiences

Associative Memory Meaningful Memory

The ability to link previously unrelated pieces =~ The ability to encode and recall the semantic
of information gist of experiences and narratives

Cross-Modal Association Story Recall

Verbatim Memory

The ability to store and reproduce information
precisely as it was presented

Short Sequence Recall
Remember connections between text,

Remember gist of stories
images, audio.

Remember short sequences

+“You met this person *“Please summarize the ending of my +"“Please recall the address | mentioned
yesterday, what was novel draft from yesterday.” earlier today.”
her name?”

Personalization Adherence Movie Recall Set Recall

Remember and apply user preferences Remember gist of movies

Remember a set (order does not matter)

0

+“Sign off my emails as | *“What was the main conflict in the movie = “Can you remind me what our grocery
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Figure 28: Memory similarly splits into associative, meaningful, and verbatim components, allowing
precise diagnosis of where systems succeed versus fail (,Hendrycks et al., 2025,).
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Generality is the percentage of these domains where a system achieves expertlevel
capability. If a system scores at the 80th percentile or higher on three out of ten domains, that's
30% generality.* Foundation models dramatically increased this compared to traditional narrow Al
- one model handling writing, math, coding, and visual understanding represents unprecedented
breadth. But current systems still cover only a fraction of cognitive capabilities, with particularly
weak performance on long-term planning and memory-related domains ( Hendrycks et al., 2025 ;
Kwa et al., 2025 ).

Knowledge Reading
Speed & Writing
- GPT-5 (2025)
— GPT-4 (2023)
Auditory Math
Visual Reasoning
Memory ) Working
Retrieval Memory Memory
Storage
Model K RW M R WM MS MR V A 5 Total
GPT-4 8% 6% 4% 0% 2% 0% 4% 0% 0% 3% 27%
GPT-5 9% 10% 10% 7% 4% 0% 4% 4% 6% 3% 57%

Figure 29: The capabilities of GPT-4 and GPT-5, alongside a table that quantifies them (,Hendrycks
et al., 2025)).

Even though capability and generality exist on a continuum, certain thresholds still matter
for safety planning. A system performing well on 50% of domains poses different risks than one
excelling at 90%, we can't ignore this reality even if generality is a continuous variable. When
pressed for concrete thresholds - which are often demanded in discussions - here’s our interpretation
of roughly how terms map onto the (performance, generality) space:

ARTIFICIAL GENERAL INTELLIGENCE (AGI)

“You can use expert-level parity (roughly 80-90th percentile human performance) as the threshold for “adequate”
in measuring generality. Different researchers might set this threshold higher or lower depending on their specific
concerns.


https://arxiv.org/abs/2510.18212
https://arxiv.org/abs/2503.14499
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https://arxiv.org/abs/2510.18212
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Matching a well-educated adult’s cognitive versatility and proficiency. Often used interchange-
ably with Human level Al (HLAI). Using our definition, these would be systems achieving
expert-level performance (80-90th percentile) across most cognitive domains (80-90%).

TRANSFORMATIVE Al (TAl)

Al capable of triggering economic and social transitions comparable to the agricultural or
industrial revolution. TAl is defined by impact potential rather than cognitive architecture. Using
our definition, this could mean moderate capability (60th percentile) across many economically
important tasks (50% of domains), OR exceptional capability (99th percentile) on critical
domains like automated ML R&D (20% of domains).

ARTIFICIAL SUPERINTELLIGENCE (ASI)

Any intellect that greatly exceeds human cognitive capability across virtually all domains of

interest. Using our definition, this represents systems achieving superhuman capability (>100%,
greatly exceeding all humans) across virtually all cognitive domains (95%+ of domains).



https://www.openphilanthropy.org/research/some-background-on-our-views-regarding-advanced-artificial-intelligence/
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Figure 30: The two-dimensional view of capability x generality. Different colored curves represent
possible development paths to ASI. Every point on these paths corresponds to a different level of AGI
capability.

This framework provides a concrete foundation for thinking about Al safety. The next
sections of this chapter, look at why capabilities and generality have been improving rapidly in
the recent years (Scaling), and what we can say about where they might be headed (Forecasting
and Takeoff). Thinking about Al progress in this continuous spectrum will help throughout this
book when we discuss risks and mitigation strategies. Certain capability combinations might enable
dangerous emergent behaviors even before reaching “human-level” on most tasks. Similarly gover-
nance frameworks, and clear policy communication depend on precise measurement to trigger
appropriate responses. The rate of improvement along either axis provides important signals about
which risks are most pressing, and which safety mitigations need to be developed.

lt's worth noting that our working definition does not include the autonomy with which an AGI
system operates. This is a really important axis to pay attention to, but it has a higher bearing on
deployment and impact rather than something inherent to a definition for AGI. It will be explored
in the next chapter dedicated to risks from Al.

Measuring degree of Autonomy (Agency) |
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OPTIONAL NOTE

Autonomy describes how Al systems interact with humans, not what they can do. A highly capable system
can be deployed with varying levels of human oversight. Just like we had continuous curves for capability
and generality, we can similarly have an increasing level of autonomy measured by what % of a task is done
by the human or the Al (,Morris et al., 2024,): Autonomy level affects risk exposure, not inherent danger. A
capable system deployed as a tool (Level 1) might be safer than the same system deployed as an agent (Level
5), even though the underlying capability is identical. Higher capability levels “unlock” higher autonomy
levels—you can't have Level 5 autonomy without sufficient capability—but having the capability doesn’t mean
you should use maximum autonomy.For safety purposes, capability and deployment autonomy should be
considered separately. A system scoring 90% on 80% of domains might be safely deployed at Level 2
(consultant) while being dangerous at Level 5 (agent). The framework helps us reason about these tradeoffs
explicitly.

35

The (t,n)-AGI Framework: An Alternative way of defining AGI

OPTIONAL NOTE

AGI can also be defined through a combination of time and scale - can Al match ‘n’ experts working
together for time ‘t'., This is an alternative way to think about defining AGI. Given a time frame ‘' to
complete some cognitive task, if an Al system can outperform a human expert who is also given the time
frame ‘t' to perform the same task, then the Al system is called +-AGI for that timeframe ‘t. If a system can
outperform ‘n” human experts working on the task for timeframe ‘t', then we call it a (t,n)-AGI for the specific
time duration ‘Y, and number of experts ‘n’. The (t,n)-AGI framework does not account for how many copies
of the Al run simultaneously.As an example, if an Al that exceeds the capability of a human expert in one
second on a given cognitive task would be classified as a “one-second AGI”. One-year AGI would beat
humans at basically everything. Mainly because most projects can be divided into sub-asks that can be
completed in shorter timeframes. Within this framework, a superintelligence (ASI) could be something akin
to a (one year, eight billion)-AGlI, that is, an ASI could be seen as an AGI that outperforms all eight billion
humans coordinating for one year on a given task (,Ngo, 2023,). Researchers at METR operationalized this
by measuring task completion time horizons for 1 expert (n=1) - finding the duration where Al succeeds
consistently on professional tasks like software development and ,ML, research (,Kwa et al., 2025,).
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Figure 31: The image shows a result from METR which measured the task length horizon on
specific software engineering tasks (,Kwa et al., 2025,).

Task time horizon limitations are implicitly captured in our generality measure as weaknesses in specific
cognitive tasks like longterm memory storage and retrieval. Systems scoring poorly on memory naturally
fail on multi-day projects requiring sustained context. Current ,transformer,-based architectures specifically
struggle with limited context windows.
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5. Leveraging Scale

In the previous section, we looked at different notions of how to define AGI and measure the relevant
capabilities. Now we'll examine one of the most important drivers behind improvements in these
capabilities: scale.

5.1 Bitter Lesson

Human-engineered domain knowledge consistently loses to general methods that leverage
massive computation. We assume that most of you probably went to university in an era where
machine learning and Al roughly mean the same thing, or even that deep learning and Al mean
the same thing. This hasn't always been true. Early in Al's history, researchers believed the key
to artificial intelligence was carefully encoding human knowledge and expertise into computer
programs. This led to expert systems filled with hand-crafted rules and chess engines programmed
with sophisticated strategic principles. Time and again, these approaches hit walls while simple
learning algorithms combined with massive computation kept improving. However, time and time
again, researchers learned what we now call the bitter lesson.

The biggest lesson that can be read from 70 years of Al research is that general
methods that leverage computation are ultimately the most effective, and by a large
margin. [...] The bitter lesson is based on the historical observations that 1) Al
researchers have often tried to build knowledge into their agents, 2) this always
helps in the short term, and is personally satisfying to the researcher, but 3) in
the long run it plateaus and even inhibits further progress, and 4) breakthrough
progress eventually arrives by an opposing approach based on scaling computa-
tion by search and learning.

Richard Sutton 2019

Professor University of Alberta, Founder, Openmind Research Institute Sutton, 2019

The bitterness comes from discovering that decades of human expertise mattered less
than computation. Researchers who spent years encoding grandmaster chess knowledge watched
brute-force search defeat world champion Garry Kasparov. Hand-crafted feature detectors in
computer vision got outperformed by neural networks that learned their own features from data.
Phonetics-based speech recognition lost to statistical approaches. The pattern repeated: domain
expertise helped initially, then hit a wall. Simple learning algorithms plus massive compute kept
improving ( Sutton, 2019 ).

The bitter lesson doesn’t reject human ingenuity or algorithmic innovation. There's a
difference between building better general learning systems and encoding task-specific human
knowledge. This isn't a difference just between good old fashion Al (GoFAl), and modern deep


http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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learning . Even within deep learning , the bitter lesson still applies—the winning algorithms are
those that leverage scale most effectively. Transformers didn’t beat LSTMs by encoding linguistic
knowledge. They outperformed because attention mechanisms parallelize better and can actually
use massive compute productively. Algorithmic innovation still matters - finding architectures and
training methods that extract more from the same data and hardware. The algorithms that succeed
are the ones that unlock scale’s potential.

The bitter lesson shapes expectations about Al progress. If the bitter lesson continues to be
true, improvements should come from either finding algorithms that better leverage scale, or simply
scaling existing algorithms with more compute, data, and parameters. In the last few years, the
majority of gains seen in Al capabilities have emerged from scaling up the same transformer based
language models.

5.2 Scaling Laws

Training frontier Al models costs hundreds of millions of dollars, making it critical to
predict returns on investment. Al labs face resource allocation decisions with massive stakes:
should they spend more on GPUs or training data ? Train a larger model briefly or a smaller model
longer? With a fixed compute budget, they might choose between a 20-billion parameter model
trained on 40% of their data or a 200-billion parameter model trained on 4% of it. Getting this
wrong wastes hundreds of millions. Scaling laws help turn these gambles into engineering decisions
by establishing empirically observed relationships between inputs and model accuracy.

Scaling laws describe how model accuracy changes as you vary four key variables:

350 750 3 20
Million Million Billion Billion

Prompt: 4 portrait pl«o‘to of a kangaroo wearing an orange hoodie and
blue sung|ass.e.s stmwling on the grass in front of the S({o[ney Opera
House L\ou'ms a sign on the chest that says Welcome Friends/!

Figure 32: Example of capabilities increasing with an increase with one of variables in the scaling

laws - parameter count. The same model architecture (Parti) was used to generate an image using

an identical prompt, with the only difference between the models being the parameter size. There are

noticeable leaps in quality, and somewhere between 3 billion and 20 billion parameters, the model
acquires the ability to spell words correctly (,Yu et al., 2022,).

Scaling laws are empirically observed relationships, not laws of nature. OpenAl first docu-
mented these relationships in 2020 by running hundreds of experiments, varying inputs while
measuring accuracy ( Kaplan et al., 2020 ). They found that when you increase compute by
10x, accuracy improves predictably. Double the parameters, accuracy jumps predictably. These
patterns proved surprisingly consistent across model architectures and tasks, suggesting they


https://arxiv.org/abs/2206.10789
https://arxiv.org/abs/2001.08361
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capture something fundamental about how neural networks learn. Later research revealed optimal
training requires roughly 20 tokens of data per parameter - about 10x more data than early laws
suggested® ( Hoffmann et al., 2022 ). This meant previous large models were undertrained relative
to their size. The relationships continue evolving as researchers gather more evidence, but the
core insight remains: scale drives predictable capability gains. The following graphs clearly show
massive increases in scale for data, compute, and parameter count by all major Al labs.

Number of parameters

1 trillion Switch’

2.0x/year between 2010-2025

10 billion
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X ( )~'3.GPT-1
100 million (_)AleXNet‘
X 1.2x/year between 1950-2010
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10,000 (Deep Blue
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Publication date

Figure 33: Exponential growth of parameters in notable Al systems. Parameters are variables in an Al

system whose values are adjusted during training to establish how input data gets transformed into the

desired output; for example, the connection weights in an ,artificial neural network, (,Giattino et al.,
2023,). (interactive version on website)

5This is also commonly called ‘chinchilla optimality” or the chinchilla optimal frontier based on the original model
that these laws were tested on.
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Figure 34: Exponential growth of datapoints used to train notable Al systems. Each domain has a

specific data point unit; for example, for vision it is images, for language it is words, and forgames it

is timesteps. This means systems can only be compared directly within the same domain (,Giattino et
al., 2023,). (interactive version on website)

Training computation (petaFLOP)
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Figure 35: Exponential growth of computation in the training of notable Al systems. Computation
is measured in total peta FLOP, which is 10e15 floating-point operations (,Giattino et al., 2023,).
(interactive version on website)

The Broken Neural Scaling Laws (BNSL) update in 2023

OPTIONAL NOTE
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Research showed that performance doesn’t always improve smoothly - there can be sharp transitions, tempo-
rary plateaus, or even periods where performance gets worse before getting better. Examples of this include
things like “Grokking”, where models suddenly achieve strong generalization after many training steps, or
deep double descent, where increasing model size initially hurts then helps performance. Rather than simple
power laws, BNSL uses a more flexible functional form that can capture these complex behaviors. This allows
for more accurate predictions of scaling behavior, particularly around discontinuities and transitions. Scaling
laws are a good baseline, but discontinuous jumps in capabilities and abrupt step changes are still possible
(,Caballero et al., 2023,).

Break 1
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Figure 36: A Broken Neural Scaling Law example (dark black solid line) (with 3 breaks where

purple dotted lines intersect with dark black solid line) contains 4 individual power law segments

(where the dashed lines that are yellow, blue, red, and green overlap with the dark black solid

line). The Tst and 2nd break are very smooth, the 3rd break is very sharp (,Caballero et al.,
2023,).

5.3 Scaling Hypothesis

Scaling might continue driving capability gains. Look back at the examples from previous
sections - the programming abilities, emergent reasoning, scientific research assistance, the jump
from GPT-3.5 to GPT-4 across professional exams. These capabilities appeared as models got
bigger and trained on more data, without requiring new architectural breakthroughs or encoded
domain knowledge. If current approaches scaled up could produce systems capable of automating
Al research within years, safety work becomes far more urgent. The existing evidence supports
multiple interpretations because we're watching a technology develop in realtime whose limits we
don't fully understand. So different people hold different hypotheses about how the future could
unfold.

The strong scaling hypothesis. This proposes that simply scaling up existing architectures with
more compute and data will be sufficient to reach transformative Al capabilities ( Gwern, 2020 ).


https://arxiv.org/abs/2210.14891
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According to this view, we already have all the fundamental components needed - it's just a matter
of making them bigger, following established scaling laws.

- = Total Co«Po\bihti&S -(.:._' -
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Sc«zhng
A Foundation

—  Model

Figure 37: Augmentation/Scaffolding stays constant, but if the scaling hypothesis, weak or strong, is
true, then capabilities will keep improving just by scaling.

The weak scaling hypothesis. This view states that even though scale will continue to be the
primary driver of progress, we will also need targeted architectural and algorithmic improvements to
overcome specific bottlenecks. These improvements wouldn't require fundamental breakthroughs,
but rather incremental enhancements to better leverage scale ( Gwern, 2020 ).

Researchers have been developing algorithms that leverage scale and compute for more
than a decade. We have seen many gains come from improvement in compute efficiency
from innovations like better attention mechanisms, mixture-of-experts routing, and efficient training
methods. But even when researchers have developed sophisticated algorithms following the bitter
lesson’s principles, data suggests that between 60-95% of performance gains came from scaling
compute and data. While algorithmic improvements contributed 5-40%, though there is substantial
methodological uncertainty in disentangling these contributions ( Ho et al., 2024 ).

The emergence of unexpected capabilities might provide another argument for strong
scaling. We've seen previous generations of foundation models demonstrate remarkable abilities
that weren’t explicitly trained for, like programming. This emergent behavior hints that it is not
impossible for higher-order cognitive abilities to similarly emerge simply as a function of further
scale.


https://gwern.net/scaling-hypothesis
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Figure 38: Even if we see no improvements in model scale, other elicitation techniques and scaffolding

can keep improving. So overall capabilities keep growing. Realistically, the future is probably going to

see both improvement due to scaffolding and scale. So for now, there does not seem to be an upper
limit on improving capabilities as long as either one of the two holds.

Scale combined with techniques and tools hypothesis. Essentially, both the scaling laws (which
only predict foundation model capabilities) and most debates around “scale is all you need” often
miss other aspects of Al development that happen outside the scope of what scaling laws can
predict. They don't account for improvements in Al “scaffolding” (like chain-ofthought prompting,
tool use, or retrieval), or combinations of multiple models working together in novel ways. Any LLM
with internet access, code execution, and the ability to call upon the help of other specialized sub-
models has substantially more capability than the same LLM alone. We gave several examples of this
being the dominant trend in our first section - tool use, thinking for longer (inference time scaling),
MCP servers and so on.

Debates around the scaling laws only tell us about the capabilities of a single foundation
model trained in a standard way. For example, by the strong scaling hypothesis we can reach TAI
by simply scaling up the same foundation model until it completely automates ML RnD. But even
if scaling stops, halting capabilities progress on the core foundation model (in either a weak or a
strong way), the external techniques that leverage the existing model can still continue advancing.
Many researchers think that this is a core element where future capabilities will come from. It is
also referred to as “unhobbling” ( Aschenbrenner, 2024 ), “schlep” ( Cotra, 2023 ) and various
other terms, but all of them point to the same underlying principle - raw scaling of single model
performance is only one part of overall Al capability advancement.


https://situational-awareness.ai/from-gpt-4-to-agi/#Unhobbling
https://www.planned-obsolescence.org/scale-schlep-and-systems/
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The relationship between training compute and capabilities varies across ~Z EPOCH Al
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Figure 39: An example of how much the performance on a benchmark can change just by using

post training techniques like doing reasoning specific training and allowing the model to think for

longer. The ,base model, scores 4.5% on the humanities last exam benchmark (HLE), whereas with

each subsequent “unhobbling” step we see jumps in performance leading up to a 25% score on the
benchmark (,Somala et al., 2024,).

Even the tool based scaling hypothesis is debated. Some argue that tools or scale poured into
LLMs is unlikely to lead to AGI as they define it. They focus on completely different architectures
from transformer based LLMs, focusing instead on things like neuro-symbolic approaches ( Goertzel
et. al., 2023).

Despite disagreements about which hypothesis is correct, major Al labs are betting heavily
on scaling. Sam Altman from OpenAl has stated his belief that scaling is going to be a big compo-
nent leading to capability gains ( Altman, 2023 ), Anthropic CEO Dario Amodei has expressed
similar views ( Amodei, 2023 ) and DeepMind’s safety team similarly wrote that “not many more
fundamental innovations are needed for AGI” ( DeepMind, 2022 ). This consensus suggests that
regardless of whether strong, weak, or tools-based scaling dominates, scale itself will likely remain
central to nearterm progress.


https://epoch.ai/gradient-updates/three-issues-undermining-compute-based-ai-policies
https://arxiv.org/abs/2310.18318
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6. Forecasting Timelines

Predicting when Al automates cognitive labor determines which safety strategies are
viable. The difference between 10 years and 50 years fundamentally changes which safety strate-
gies are viable and which risks demand immediate attention . If TAl is able to automate cognitive
labor (and thereby automate ML RnD) by 2030, we need safety solutions working soon. There's no
time for slow theoretical research—we need approaches that work with current systems and scale
quickly. If it arrives around 2050, we have breathing room for fundamental alignment research, for
building robust governance frameworks, and for developing evaluation methods we can trust.

This section presents empirical trends and forecasts of Al progress using data-driven
analysis. Our goal is to build on the scaling laws discussion and present the strongest available
evidence so you can form informed views on where Al might be headed. We focus primarily on
compute-based trends, with heavier quantitative forecasts presented alongside graphs. An appendix
covers judgment-based surveys and expert opinions. Remember the old saying: “All models are
wrong, but some are useful.”

Forecasting helps us form internally consistent beliefs about different possible futures. The
way that you should think about forecasting methods is not as concrete predictions of timelines; but
instead as scenarios that help you reason about different potential futures. They let you check if your
beliefs are internally coherent. If you think investment grows 5x per year AND software efficiency
improves 3x per year AND hardware scales 15% per year AND each order of magnitude automates
at least 10% of tasks, then what does that imply? Is the outcome of this combination consistent with
the future you expect? If you're surprised, maybe one of your input beliefs needs updating.

Current evidence suggests scaling can continue through at least 2030. Training compute
has grown 5x per year since 2020, dataset sizes have grown by 3.7x/year, and training costs by
3.5x/year. As a concrete example, this means that in mid 2025 the cost of training a single Al
model (Grok-4) including hardware and electricity, is estimated at $480 million USD ( Epoch Al,
2025 ). By 2030, this trajectory points to a single training run requiring hundreds of billions of
dollars and gigawatts of power - which is comparable to running a small city ( Owen, 2025 ). These
are unprecedented scales, but analysis suggests that they aren’t impossible ( Epoch Al, 2025 ;
Sevilla et. al., 2024 ; Owen, 2025 ). The question is whether the economic incentives justify it and
whether the infrastructure constraints (chips, power, data, ... ) can be overcome in time.

Al systems that leverage more compute during training and inference are capable of
automating progressively more tasks. Initially, only a small fraction of tasks are automated, so
running Al systems creates relatively little economic value.® Once effective compute budgets grow
large enough, the range of automated tasks expands until eventually all cognitive labor becomes
automated. This feedback loop—compute enabling automation, which increases productivity, which
funds more compute—continues until full labor automation.

%You can think of a task as a specific unit of work or activity that a worker performs as part of their job (for
instance tasks for a factory worker may include operating machinery, inspecting products, and coordinating with
team members). Some tasks are assumed to be harder to automate than others, as they require more training and
runtime compute to be effectively automated.


https://epoch.ai/trends
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Compute scaling drives a feedback loop of Al automation Z EPOCH Al
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Figure 40: The feedback loop of compute leading to more automation, which increases productivity,
which increases both the amount of produced compute as well as compute efficiency completing the
loop until all labor is automated (,Epoch Al, 2025,).

The path to full labor automation runs through three resources: compute, data, and the
economic returns that fund both. In the subsections below, we examine each constraint. For
compute, we look at effective FLOP growth—the combination of more chips, better algorithms, and
more efficient hardware. For data, we track when we exhaust the internet’s text and what happens
after. Each section answers: does this constraint stop scaling before 20307? The appendix provides
detailed breakdowns of the other relevant factors like investment trends, semiconductor production,
and power infrastructure for readers who want the full picture.

All forecasts come with wide error margins that compound over time. Even if we assume
compute-based scaling laws hold, we still don't know how much compute TAI will actually require.
One framework for estimating the compute required for general intelligence uses “biological
anchors,” treating the human brain as a proof of concept. These estimates vary dramatically
depending on the biological process used as a reference: a lower bound considers the compute
performed in learning skills during a human lifetime ( 10{?®} FLOP), while a theoretical upper
bound accounts for the total compute performed in shaping humans over evolutionary history (
1041} FLOP) - twelve orders of magnitude of uncertainty ( Carlsmith, 2020 ; Cotra, 2020 ; Ho,
2022 ). It's like not knowing if something costs one dollar or a frillion dollars. When someone says
“ AGl in 2045 ," they mean “ somewhere in the 2030s-2050s range, with 2045 as a rough center
“ - not a precise date. The same principle applies to all frends and forecasts presented through this
section; for example, projections of available chips range by a factor of 20x, and some compute
estimates span 50x ( Sevilla et al., 2024 ).


https://epoch.ai/data/ai-models
https://coefficientgiving.org/research/how-much-computational-power-does-it-take-to-match-the-human-brain/
https://www.alignmentforum.org/posts/KrJfoZzpSDpnrv9va/draft-report-on-ai-timelines
https://epoch.ai/blog/grokking-bioanchors
https://epoch.ai/blog/grokking-bioanchors
https://epoch.ai/blog/can-ai-scaling-continue-through-2030
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6.1 Effective Compute

Effective compute combines three independent factors that each multiply your Al capa-
bilities. Scaling laws track performance against compute, but “compute” means more than just
counting GPUs. When researchers say GPT-4 used more compute than GPT-3, they're not just talking
about running more hardware for longer. They're talking about the growth in ‘effective’ compute
measured in ‘effective’ floating-point operations (eFLOPs). As an analogy, think of it like measuring
how far a fleet of cars can travel. You need three things: how many cars you have (chip production),
how fast each car goes (hardware efficiency), and how efficiently you're driving (software efficiency)
(Erdil et al., 2025 ). The relationship looks like this:

Effective compute = Software efficiency x Hardware efficiency x Number of chips

As an illustrative example, think about wanting to train a model that gets 90% accuracy on some
benchmark. In 2020, that might have required 1 billion FLOP using the algorithms available then.
But by 2025, better training methods, hardware utilization and other algorithmic improvements
mean you only need 100 million FLOP to hit that same 90% accuracy. Your software got 10x more
efficient. Better algorithms multiply your effective compute without building a single new chip.
Meanwhile, the physical efficiency of your chips got better too. A 2025 GPU does more FLOP per
dollar than a 2020 GPU - that's hardware efficiency. And you're also just making more chips overall
as more investment keeps flowing in. So the total “effective” FLOPs changes as a function of all
three of these variables.

Each factor can improve independently, which is why effective compute grows faster than
any single input. You can build more chips without improving their speed. You can develop better
software to make use of existing hardware. You can design faster processors without changing either
your software or building more chips. When all three improve simultaneously—as they have been—
the total compute available (effective compute) compounds much faster than hardware trends alone
would suggest. Here's are the trends for each in 2025 ( Epoch Al, 2025 ), with more details in the
appendix:
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| investment e ™ ;
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Figure 41: Growth in effective compute breaks down into three parts: growth in computing hardware,
improvements in hardware efficiency, and software efficiency gains.


https://arxiv.org/abs/2503.04941
https://epoch.ai/trends
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Figure 42: The GATE model by EpochAl translates a given stock of effective compute into a degree of Al

automation. This occurs by expanding the fraction of tasks that can be automated and by increasing the

effective runtime compute on tasks that are already automated. Widespread automation often happens

within two decades from the start of the simulation. Note that GATE uses the abstract notion of a “fraction

of economically useful tasks” as a simplification, and does not specify the tasks and the order in which
they are automated. (,Epoch Al, 2025,).
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Figure 43: The fraction of Gross World Product (GWP) paid out to human workers rapidly decreases
as Al becomes the primary source of labor (,Epoch Al, 2025,). We talk about wages falling below
subsistence levels as a concrete risk in the next chapter.

6.2 Training Data

Besides just effective compute, the second overarching factor that we have to take into consideration
is the amount of available data to train on.

The training dataset size for language models has grown by 3.7x per year since 2010.
The internet has maybe 30 years worth of text data at current consumption rates—but we'll hit that
wall around 2028. The indexed web contains roughly 500 ftrillion tokens of text (after removing
duplicates). The largest models in 2024 train on about 15 trillion tokens. If we keep scaling at


https://epoch.ai/gate#ai-automation
https://epoch.ai/gate#ai-automation
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4x per year, projections say that we will exhaust high-quality public text data between 2026 and
2032 ( Epoch Al, 2023 ; Villalobos et al., 2024 ). Three escape routes exist, whether data actually
constrains scaling through 2030 depends on how well these alternatives work.:

. . . .. 2
Projections of data usage with overtraining Z EPOCH Al
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Figure 44: Projections of future dataset sizes according to three different scaling policies. Depending
on the degree of overtraining, the stock is fully used between 2025 and 2030 (, Villalobos et al., 2024,).


https://epoch.ai/trends
https://arxiv.org/abs/2211.04325
https://epoch.ai/blog/will-we-run-out-of-data-limits-of-llm-scaling-based-on-human-generated-data
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7. Tokeoff

This final section synthesizes a lot of the discussion that has happened through this chapter. We
started from where we are currently, and went all the way to forecasting specific trends in the inputs
to Al capabilities. So this section lays out different sides of the debate on what the combination of
all of this implies.

Takeoff speed refers to how quickly Al systems become dramatically more powerful than
they are today and cause major societal changes. This is related to, but distinct from, Al
timelines (how long until we develop advanced Al). While timelines tell us when transformative Al
might arrive, takeoff speeds tell us what happens after it arrives - does Al capability and impact
increase gradually over years, or explosively over days or weeks?

How can we think about different takeoff speeds? When analyzing different takeoff scenarios,
we can look at several key factors:

In the next section we discuss just one of these factors that tends to be the most discussed aspect -
takeoff speed. The rest are explained in the appendix.

7.1 Speed

What is a slow takeoff? In a slow takeoff scenario, Al capabilities improve gradually over
months or years. We can see this pattern in recent history - the transition from GPT-3 to GPT-4
brought significant improvements in reasoning, coding, and general knowledge, but these advances
happened over several years through incremental progress. Paul Christiano describes slow takeoff
as similar to the Industrial Revolution but “10x-100x faster” ( Davidson, 2023 ). Terms like “slow
takeoff” and “soft takeoff” are often used interchangeably.

In mathematical terms, slow takeoff scenarios typically show linear or exponential growth patterns.
With linear growth, capabilities increase by the same absolute amount each year - imagine an Al
system that gains a fixed number of new skills annually. More commonly, we might see exponential
growth, where capabilities increase by a constant percentage, similar to how we discussed scaling
laws in earlier sections. Just as model performance improves predictably with compute and data,
slow takeoff suggests capabilities would grow at a steady but manageable rate. This might manifest
as GDP growing at 10-30% annually before accelerating further.

The key advantage of slow takeoff is that it provides time to adapt and respond. If we discover
problems with our current safety approaches, we can adjust them before Al becomes significantly
more powerful. This connects directly to what we'll discuss in later chapters about governance
and oversight - slow takeoff allows for iterative refinement of safety measures and gives time for
coordination between different actors and institutions.


https://www.alignmentforum.org/posts/Nsmabb9fhpLuLdtLE/takeoff-speeds-presentation-at-anthropic
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Figure 45: An illustration of slow continuous takeoff (,Martin & Eth, 2021,).

Fast takeoff describes scenarios where Al capabilities increase dramatically over very
short periods - perhaps days or even hours. Instead of the gradual improvement we saw from
GPT-3 to GPT-4, imagine an Al system making that much progress every day. This could happen
through recursive self-improvement, where an Al system becomes better at improving itself, creating
an accelerating feedback loop.

Mathematically, fast takeoff involves superexponential or hyperbolic growth, where the
growth rate itself increases over time. Rather than capabilities doubling every year as in expo-
nential growth, they might double every month, then every week, then every day. This relates to what
we discussed in the scaling section about potential feedback loops in Al development - if Al systems
can improve the efficiency of Al research itself, we might see this kind of accelerating progress.

The dramatic speed of fast takeoff creates unique challenges for safety. As we'll explore in
the chapter on strategies, many current safety approaches rely on testing systems, finding problems,
and making improvements. But in a fast takeoff scenario, we might only get one chance to get things
right. If an Al system starts rapidly self-improving, we need safety measures that work robustly from
the start, because we won't have time to fix problems once they emerge.

Terms like “fast takeoff”, “hard takeoff” and “FOOM" are often used interchangeably.


https://www.alignmentforum.org/posts/pGXR2ynhe5bBCCNqn/takeoff-speeds-and-discontinuities
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Figure 46: An illustration of fast continuous takeoff, which is usually taken to mean superexponential
or hyperbolic growth. The growth rate itself increases (,Martin & Eth, 2021,).

The speed of Al takeoff fundamentally shapes the challenge of making Al safe. This connects
directly to what we discussed about scaling laws and trends - if progress follows predictable patterns
as our current understanding suggests, we might have more warning and time to prepare. But if
new mechanisms like recursive self-improvement create faster feedback loops, we need different
strategies. A simple example helps illustrate this: Today, when we discover that language models
can be jailbroken in certain ways, we can patch these vulnerabilities in the next iteration. In a slow
takeoff, this pattern could continue - we'd have time to discover and fix safety issues as they arise. But
in a fast takeoff, we might need to solve all potential jailbreaking vulnerabilities before deployment,
because a system could become too powerful to safely modify before we can implement fixes.


https://www.alignmentforum.org/posts/pGXR2ynhe5bBCCNqn/takeoff-speeds-and-discontinuities
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Figure 47: Comparison of slow vs fast takeoff. Showcasing that while described as linguistically slower
than fast, it is by no means slow (,Christiano, 2018,).

Understanding fast vs slow helps you get the overview of the takeoff debate, but there can be a
bunch of other factors like - are there sudden jumps? (takeoff continuity), how many systems are
‘taking off’ at the same tim? (takeoff polarity), how architecturally similar are these systems? (takeoff
similarity) . If you want to learn more feel free to read the details on these in the optional appendix.

7.2 Takeoff Arguments

The Overhang Argument . There might be situations where there are substantial advancements or
availability in one aspect of the Al system, such as hardware or data, but the corresponding software
or algorithms to fully utilize these resources haven’t been developed yet. The term ‘overhang’ is
used because these situations imply a kind of ‘stored’ or ‘latent’ potential. Once the software or
algorithms catch up to the hardware or data, there could be a sudden unleashing of this potential,
leading to a rapid leap in Al capabilities. Overhangs provide one possible argument for why we
might favor discontinuous or fast takeoffs. There are two types of overhangs commonly discussed:

Overhangs are also used as a counter argument to why Al pauses do not meaningfully
affect takeoff speeds. One counter argument to the overhang argument is that it relies on the
assumption that during the time that we are pausing Al development, the rate of production of chips
will remain constant. It could be argued that the companies manufacturing these chips will not make
as many chips if data centers aren’t buying them. However, this argument only works if the pause
is for any appreciable length of time, otherwise the data centers might just stockpile the chips. It is
also possible to make progress on improved chip design, without having to manufacture as many


https://sideways-view.com/2018/02/24/takeoff-speeds/
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during the pause period. However, during the same pause period we could also make progress on
Al safety techniques ( EImore, 2024 ).

The Economic Growth Argument . Historical patterns of economic growth, driven by human
population increases, suggest a potential for slow and continuous Al takeoff. This argument says
that as Als augment the effective economic population, we might witness a gradual increase in
economic growth, mirroring past expansions but at a potentially accelerated rate due to Al-enabled
automation. Limitations in Al’s ability to automate certain tasks, alongside societal and regulatory
constraints (e.g. that medical or legal services can only be rendered by humans), could lead to a
slower expansion of Al capabilities. Alternatively, growth might far exceed historical rates. Using a
similar argument for a fast takeoff hinges on Al's potential to quickly automate human labor on a
massive scale, leading to unprecedented economic acceleration.
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Figure 48: A visualization of the ranking of arguments for explosive economic growth, both in favor
and against. By ,Epoch, Al (,Erdil & Besiroglu, 2024,).

Compute Centric Takeoff Argument . This argument, similar to the Bio Anchors report, assumes
that compute will be sufficient for transformative Al. Based on this assumption, Tom Davidson's
2023 report on compute-centric Al takeoff discusses feedback loops that may contribute to takeoff
dynamics.

Depending on the strength and interplay of these feedback loops, they can create a self-fulfilling
prophecy leading to either an accelerating fast takeoff if regulations don’t curtail various aspects


https://www.youtube.com/watch?v=Q3eRy4t2oPQ
https://arxiv.org/abs/2309.11690
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of such loops, or a slow takeoff if the loops are weaker or counterbalanced by other factors. The
entire model is shown in the diagram below:

effective compute in
{arg-e.st Training run
[ Better AL ]

[So?tware,] (Hara{w:arﬂ [$ on ‘brainingJ
W@P*

[ Investment )[ Automation J

Figure 49: A summary of What a Compute-Centric Framework Says About Takeoff Speeds (,Davidson,
2024,)

Automating Research Argument. Researchers could potentially design the next generation of
ML models more quickly by delegating some work to existing models, creating a feedback loop of
ever-accelerating progress. The following argument is put forth by Ajeya Cotra:

Currently, human researchers collectively are responsible for almost all of the progress in Al
research, but are starting to delegate a small fraction of the work to large language models. This
makes it somewhat easier to design and train the next generation of models.


https://www.openphilanthropy.org/research/what-a-compute-centric-framework-says-about-takeoff-speeds/
https://www.openphilanthropy.org/research/what-a-compute-centric-framework-says-about-takeoff-speeds/
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Figure 50: A. This figure shows a representation of a self-reinforcing loop (in red). It demonstrates how
internally deployed Al systems are used to help automate Al R&D, initially alongside human researchers.
These Al R&D efforts culminate in a more capable Al system, which can be deployed as a new, improved,
automated researcher. This cycle keeps repeating, resulting in a self-reinforcing loop (,Stix et al., 2025,)

The next generation is able to handle harder tasks and more different types of tasks, so human
researchers delegate more of their work to them. This makes it significantly easier to train the
generation after that. Using models gives a much bigger boost than it did the last time around.

Each round of this process makes the whole field move faster and faster. In each round, human
researchers delegate everything they can productively delegate to the current generation of models
— and the more powerful those models are, the more they contribute o research and thus the faster
Al capabilities can improve ( Cotra, 2023 ).

So before we see a recursive explosion of intelligence, we see a steadily increasing amount of the
full RnD process being delegated to Als. At some point, instead of a significant majority of the
research and design being done by Al assistants at superhuman speeds, it will become that - all of
the research and design for Als is done by Al assistants at superhuman speeds.

At this point there is a possibility that this might eventually lead to a full automated recursive
intelligence explosion.

The Intelligence Explosion Argument . This concept of the ‘intelligence explosion’ is also central
to the conversation around discontinuous takeoff. It originates from |.J. Good’s thesis, which posits
that sufficiently advanced machine intelligence could build a smarter version of itself. This smarter
version could in turn build an even smarter version of itself, and so on, creating a cycle that could
lead to intelligence vastly exceeding human capability ( Yudkowsky, 2013 ).

In their 2012 report on the evidence for Intelligence Explosions, Muehlhauser and Salamon delve
into the numerous advantages that machine intelligence holds over human intelligence, which
facilitate rapid intelligence augmentation ( Muehlhauser, 2012 ). These include:


https://arxiv.org/abs/2504.12170
https://www.planned-obsolescence.org/ais-accelerating-ai-research/
https://intelligence.org/files/IEM.pdf
https://intelligence.org/files/IE-EI.pdf
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8. Appendix: Forecasting

8.1 Effective Compute

8.1.1 Hardware Efficiency

The first factor in increasing effective compute is - how efficient is the hardware that we produce at
doing computation?

Al chips are getting about 35% more powerful each year, but we're approaching physical
limits. Since around 2010, the raw computational performance (FLOP/s) of GPUs in FP32 precision
has grown by roughly 1.35x per year ( Epoch Al, 2023 ; Hobbahn et al., 2023 ). The improvement
comes from things like denser transistors, specialized Al circuitry, and switching to lower-precision
number formats. Performance per dollar has improved rapidly, and hardware at any given precision
and fixed performance level becomes 30% cheaper each year. At the same time, manufacturers
continue to intfroduce more powerful and expensive hardware ( Epoch Al, 2025 )

In the near future this trend seems likely to continue, but thermodynamic limits will
eventually stop this trend. Chips can only get so energy-efficient before physics says “no”. Every
computation generates heat as a fundamental law of physics, not an engineering problem. Current
analysis suggests there is room for a 50 to 1,000x improvement in energy efficiency before we
hit fundamental CMOS limits, with a 50% chance that improvements cease before a roughly 200x
improvement on existing technology. These estimates suggest that CMOS processors are likely
sufficiently efficient to power substantially larger Al training runs than today.” This implies we have
significant headroom to scale using current silicon paradigms through 2030 and beyond, although
hardware R&D returns may eventually diminish as we approach physical limits. Beyond these limits,
training runs would likely require radical changes to computing paradigms, like a shift to adiabatic
computing ( Ho et al., 2023 ; Sevilla et al., 2024 ).

’CMOS (Complementary Metal-Oxide-Semiconductor) is the primary paradigm in processor production. The
majority of all digital integrated circuits (CPUs, GPUs, RAM, mobile SoCs) produced today are CMOS.


https://epoch.ai/trends
https://epoch.ai/blog/trends-in-machine-learning-hardware
https://epoch.ai/data/machine-learning-hardware
https://epoch.ai/blog/limits-to-the-energy-efficiency-of-cmos-microprocessors
https://epoch.ai/blog/can-ai-scaling-continue-through-2030
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Figure 51: Currently observed trends in the efficiency of hardware used for ,ML, over the last decades.
We can see a clear year by year increase in peak computational performance (,Hobbahn et al., 2023,).
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Figure 52: A forecast of the future using the Growth and Al Transition Endogenous (GATE) playground.
This graph shows investments in hardware R&D improving the efficiency of Al chips (measured in units of
FLOP/year per $S). Eventually, hardware efficiency is capped by physical limits. The red line showcases
aggressive parameter settings, green is conservative parameter settings. The red zone highlights the
difference in timelines to full automation between aggressive and conservative models (,Epoch Al,

2025,).

8.1.2 Software and Algorithmic Efficiency

The second factor in increasing effective compute is - how well we can utilize all the existing
hardware that we have. This is separate from just making the physical hardware itself more efficient.


https://epoch.ai/blog/trends-in-machine-learning-hardware
https://epoch.ai/gate
https://epoch.ai/gate
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Better algorithms have cut the compute needed for a given result by 3x per year. The level
of compute needed to achieve a given level of performance has halved roughly every 8 months® .
This rapid improvement means that the compute required to achieve specific levels of capability
on benchmarks can drop by orders of magnitude over just a few years of algorithmic progress.
The improvements to compute efficiency explain roughly 35% of performance improvements in
language modeling since 2014, with the other 65% coming from just building more chips and
running them longer. Overall, this means we're getting smarter about using available hardware, and
not just throwing more compute at problems ( Epoch Al, 2023 ; Ho et al., 2024 ).
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Figure 53: Estimates of the contributions of scaling and algorithmic innovation in terms of the raw
compute that would be naively needed to achieve a state-of-the-art level of performance. The contribution
of algorithmic progress is roughly half as much as that of compute scaling (,Ho et al., 2024,)

895% confidence interval of 5 to 14 months


https://epoch.ai/trends
https://epoch.ai/blog/algorithmic-progress-in-language-models
https://epoch.ai/blog/algorithmic-progress-in-language-models
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Figure 54: A forecast of the future using the Growth and Al Transition Endogenous (GATE) playground.

This graph shows algorithmic improvements over time. By developing better algorithms and using higher-

quality data, it becomes possible to do more with the same hardware (measured in units of “effective

FLOP per FLOP”). The red line showcases aggressive parameter settings, green is conservative para-

meter settings. The red zone highlights the difference in timelines to full automation between aggressive
and conservative models (,Epoch Al, 2025,).

8.1.3 Semiconductor Production
The third factor in increasing effective compute is - how many chips can you actually build?

Total available computing power from NVIDIA chips has grown by approximately 2.3x per
year since 2019, enabling the training of everlarger models. NVIDIA designs a dominant
share of Al training chips, and Taiwan’s TSMC serves as the primary chip fab for these manufac-
turers. The Al chip supply chain is highly concentrated. In 2024 TSMC dedicated roughly 5% of
their advanced chip production to Al accelerators—the rest goes to phones, computers, and other
electronics ( Sevilla et al., 2024 ). If Al labs want dramatically more chips, TSMC would need to
shift priorities, expand capacity, and compete with other customers who also want cutting-edge
semiconductors ( Epoch Al, 2025 ).


https://epoch.ai/gate
https://epoch.ai/blog/can-ai-scaling-continue-through-2030
https://epoch.ai/data-insights/nvidia-chip-production
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Figure 55: An estimate the world’s installed NVIDIA GPU compute capacity, broken down by GPU
model (,Epoch Al, 2025,).

Lab compute investment (real

Primary constraint Estimated lead time (years)

usD)
Renting GPUs =$30 million ~0
Buying GPUs $30 million to $1 billion ~0.5
Constructing a data center $3 billion 1-2
Constructing a very large data £10 billion to $30 billion 2-3
center/power plant
Significantly upgrading a fab £30 billion 2
Building a new cutting-edge fab $300 billion 4-5

from scratch

Figure 56: Table showcasing estimates costs and times to overcome various constraints in scaling up
compute production (,Edelman & Ho, 2025,).


https://epoch.ai/data-insights/nvidia-chip-production
https://epoch.ai/gradient-updates/compute-scaling-will-slow-down-due-to-increasing-lead-times
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Figure 57: Quarterly revenue of NVIDIA Corporation across its main market segments, reported in US

dollars. NVIDIA manufactures graphics processing units (GPUs), which were originally used for gaming

and are now used to train Al models. This data is not adjusted for inflation (,Our World in Data, 2023,).
(interactive version on website)

Investment doesn’t immediately make chip production go faster. If some country wants to
build their own TSMC equivalent, then it can take 4-5 years to build a new cutting-edge fab
(accounting for construction and permitting), though upgrading an existing fab takes less time,
around 2 years in addition to billions in investment ( Edelman & Ho, 2025 ; Epoch Al, 2025 ).
Besides the existing competition for chips from TSMC, another factor is that the machines TSMC
needs to manufacture the chips. These are almost exclusively made by a single company: ASML
in the Netherlands ( Blablova, 2025 ). These extreme ultraviolet (EUV) lithography machines cost
between $150 million to $380 million each. If/When someone (e.g. TSMC) wants to expand
production, they can’t just order fifty more next month. They join an already long waitlist ( Edelman
& Ho, 2025 ; Sevilla, AXRP Podcast, 2024 ).

Chip fabrication scale-up Z EPOCHAI
Production scale-up

10¢- -

10t e

100- -

1r T T T T T T T d
2025 2027 2029 2031 2033 2035 2037 2039 2041
Year

Figure 58: A forecast using the Growth and Al Transition Endogenous (GATE) playground. This graph

shows potential scale up of Al chip fabrication to meet demand for Al workloads. Due to the exponential

cost of rapid expansions, growth is reduced by an “adjustment costs” parameter. The red line showcases

aggressive parameter settings, green is conservative parameter settings. The red zone highlights the

difference in timelines to full automation between aggressive and conservative models (,Epoch Al,
2025,).
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8.2 Investment and Training Costs

The cost in USD of training frontier models has grown by 3.5x per year per year since
2020. If trends continue, we'll see the training cost for a single model approach billion-dollar
training runs by 2027. The cost breaks down roughly as: 50-65% for hardware (spread across its
useful life), 30-45% for the researchers and engineers, and 2-6% for electricity. This is venture
capital and Big Tech money so far, but these numbers are approaching scales where only nations
or the largest corporations can compete ( Cottier et al., 2025 ).

Breakdown of costs for training and experiments Z EPOCHAI
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Figure 59: Breakdown of model development costs for selected models. Hardware costs are amortized
to the total number of chip-hours spent on experiments and training. R&D staff costs cover the duration
of development, from initial experiments to publication (,Cottier et al., 2025,).
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Figure 60: Hardware and energy cost fo train notable Al systems. This data is expressed in US dollars,
adjusted for inflation (,Our World in Data, 2023,). (interactive version on website)
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Amortized hardware and energy cost to train frontier AT models over time Z EPOCHAI
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Figure 61: Amortized hardware cost plus energy cost for the final training run of frontier models. The

selected models are among the top 10 most compute-intensive for their time. Amortized hardware costs

are the product of training chip-hours and a depreciated hardware cost, with 23% overhead added for

cluster-level networking. Open circles indicate costs which used an estimated production cost of Google

TPU hardware. These costs are generally more uncertain than the others, which used actual price data
rather than estimates (,Cottier et al., 2025,).

The acquisition cost in USD of the hardware used to train frontier Al models has grown
by 2.5x per year since 2016. To give you a sense of how much training a frontier model costs,
the total amortized cost of developing Grok-4 (released in July 2025), including hardware and
electricity, is estimated at $480 million USD. The acquisition cost of the hardware to train Grok-3,
including GPUs, other server components, and networking, is estimated at $3 billion USD. The
hardware used to train Grok 4 may have been even more expensive ( Epoch Al, 2025 ).
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Figure 62: Money put into privately held Al companies by private investors. This excludes publicly

traded companies (e.g., Big Tech companies) and companies’ internal spending, such as R&D or

infrastructure. Expressed in US dollars, adjusted for inflation (,Our World in Data, 2023,). (interactive
version on website)

An unknown question is whether the returns to productivity gains will justify continued
investment. 2025 saw a lot of news headlines about circular investment and an “Al bubble”. If
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Al can automate significant portions of cognitive work, capturing even a fraction of the global
labor market makes trillion-dollar investments rational. However, massive investments face increasing
hurdles due to structural constraints. As compute scales up, the lead time between project initiation
and deployment lengthens significantly—roughly one year for every ten-fold increase in scale—
creating a feedback loop that naturally slows the pace of scaling ( Edelman & Ho, 2025 ).
This uncertainty regarding longterm returns over extended periods may drive investors to prefer
incremental scaling, breaking up projects into smaller chunks to gauge returns before committing
further, rather than making massive upfront investments ( Edelman & Ho, 2025 ). Several things
could break the pattern entirely: models hitting a capability ceiling where more compute doesn't
help, regulations capping training runs or data center sizes, energy costs making large runs
uneconomical, or economic recession drying up capital. Each represents a distinct way scaling
could stop independent of technical feasibility.
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Figure 63: A forecast using the Growth and Al Transition Endogenous (GATE) playground. GATE

predicts high levels of investment in Al-related capital and R&D to support massive expansions of the

effective compute stock. This involves major reallocations away from conventional capital investments

and consumption, and occurs before Al generates significant economic value, motivated by the large

payoffs from Al automation. The red line showcases aggressive parameter settings, green is conservative

parameter settings. The red zone highlights the difference in timelines to full automation between
aggressive and conservative models (,Epoch Al, 2025,).
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Figure 64: Large investments in Al precede the economic benefits of automation, driven by expectations
of large future payoffs. At the start of simulations, there is a brief period with substantial Al investment
but with little generated economic value. However, as automation proceeds the value generated by Al
grows rapidly, comprising the majority of oufput within a few years. The GATE model thus captures
the dynamic where it is worth making major upfront investments to enjoy the value generated by Al.
The investment is measured as the fraction of yearly economic output that is reinvested in Al, while
the benefit is measured as the fraction of yearly output that can be attributed to the deployment of
digital workers. The red line showcases aggressive parameter settings, green is conservative parameter
settings. The red zone highlights the difference in timelines to full automation between aggressive and
conservative models (,Epoch Al, 2025,).

8.3 Power Consumption

Training frontier models requires enough electrical power to run a small city. GPT-4’s train-
ing run likely consumed around 50 megawatts, equivalent to powering roughly 40,000 US homes.
If compute scaling continues at 4-5x per year, frontier training runs will require 4-16 gigawatts by
2030—matching the Grand Coulee Dam, America’s largest power plant ( You et al., 2025 ).

Energy costs remain small relative to hardware costs but this could change. Currently,
electricity costs represent only 2-6% of total training costs, with hardware and labor dominating
the budget ( Cottier et al., 2024 ). But if training runs scale to 10+ gigawatts while hardware
efficiency improvements slow down, energy could become a much larger fraction of costs. At $0.05
per kilowatt-hour, a 10 GW training run running for 100 days costs roughly $120 million just for
electricity. That's still less than the hardware, but it's no longer negligible. And in practice, securing
multi-gigawatt power supplies might cost significantly more than wholesale electricity rates suggest.
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Projected power growth for frontier Al training Z EPOCHAI
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Figure 65: Historic trend and forecast for the electricity demand of the largest individual frontier
training runs (,You et al., 2025,).
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Figure 66: The projected power consumption for planned frontier datacenters for selected Al compa-
nies (,Epoch Al, 2025,).

Scaling Al systems to the forecasted levels of 2030 will require substantial power infra-
structure. A training run of 2 x 10%° FLOP would require approximately 6 GW of power, assuming
improvements in hardware efficiency. This scale necessitates data center campuses ranging from 1
to 5 GW by the end of the decade ( Sevilla et al., 2024 ). Lead times increase with scale: every
additional 10x increase in compute stock adds roughly one year to project timelines. Constructing
the necessary large-scale power plants typically takes 2-3 years ( Edelman & Ho, 2025 ). Despite
these hurdles, the cost of power remains a small fraction of data center expenses—roughly one-
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tenth the cost of the chips - making the capital investment rational given the potential returns ( Ho

etal., 2025).
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Figure 67: Total electricity generated in each country or region, measured in terawatt-hours (,Our
World in Data, 2024,). (interactive version on website)
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Figure 68: The levelized cost of energy (LCOE) accounts for everything, the cost of building the power
plant, plus the ongoing costs in keeping it operational over the lifetime of the plant. The cost of energy
generation per watt has been falling for decades, and even more dramatically for renewable sources

(,Our World in Data, 2026,). (interactive version on website)
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9. Appendix: Takeoff

9.1 Continuity

Continuity describes whether Al capabilities improve smoothly and predictably or through
sudden, unexpected jumps. This is different from speed - even a fast takeoff could be continuous
if the rapid progress follows predictable patterns, and a slow takeoff could be discontinuous if
it involves surprising breakthroughs. Understanding continuity helps us predict whether we can
extrapolate from current trends, like the scaling laws we discussed earlier, or if we should expect
sudden departures from these patterns. So if you think of speed as a measure of how quickly the
Al becomes superintelligent, continuity can be thought of as a measure of “surprise”.

In a continuous takeoff, Al capabilities follow smooth, predictable trends. The improvements
we've seen in language models provide a good example - each new model tends to be somewhat
better than the last at tasks like coding or math, following patterns we can roughly predict from
scaling laws and algorithmic improvements. As we saw in the forecasting section, many aspects of
Al progress have shown this kind of predictable behavior.

Continuous progress doesn’t mean linear or simple progress. It might still involve exponential
or even superexponential growth, but the key is that this growth follows patterns we can anticipate.
Think of how GPT-4 is better than GPT-3, which was better than GPT-2 - each improvement
was significant but not completely surprising given the increase in scale and improved training
techniques.

A continuous takeoff suggests that current trends in scaling laws and algorithmic progress
might extend even to transformative Al systems. This would give us more warning about
upcoming capabilities and more ability to prepare appropriate safety measures. As we'll discuss in
the governance chapter, even though progress is fast, this kind of predictability makes it compara-
tively easier to develop and implement regulation before Al systems become extremely powerful or
uncontrollable. Keeping in mind of course that comparatively easier does not mean “easy”.

A discontinuous takeoff involves sudden jumps in capability that break from previous
patterns. Instead of steady improvements in performance as we add compute or data, we might
see the emergence of entirely new capabilities that weren’t predicted by existing trends. One
hypothetical example would be if an Al system suddenly developed robust general reasoning
capabilities after appearing to only handle narrow tasks - this would represent a discontinuity in
the pattern of Al development. The terms ‘fast takeoff’ and ‘discontinuous takeoff’ are often used
interchangeably. However, the images below displaying different takeoff trajectories might help in
clarifying the subtle differences between the concepts.

Discontinuities could arise through various mechanisms. We might discover fundamentally new
training approaches that are dramatically more efficient than current methods. Or, we might hit
tipping points for emergent capabilities - where quantitative improvements in scale lead to qualitative
changes in capability. An Al system might even discover such improvements about itself, leading
to unexpected jumps in capability.

The historical record provides some precedent for both continuous and discontinuous
scientific progress. The development of nuclear weapons represented a discontinuous jump
in explosive power, while improvements in computer processing power have followed more
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continuous trends. However, as we saw in the forecasting section, technological discontinuities

have historically been rare, which some researchers cite as evidence favoring continuous takeoff
scenarios.
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Figure 69: One example illustration of slow discontinuous takeoff, where even though progress keeps
increasing we might see sudden ‘jumps’ in progress (,Martin & Eth, 2021,).

9.2 Homogeneity

Homogeneity describes how similar or different Al systems are to each other during the
takeoff period. Will we see many diverse Al systems with different architectures and capabilities,
or will most advanced Al systems be variations of the same basic design? This isn't just about
technical diversity - it's about whether advanced Al systems will share similar behaviors, limitations,
and safety properties ( Hubinger, 2020 ).

In a homogeneous takeoff, most advanced Al systems would be fundamentally similar. We
can see hints of this pattern today - many current language models are based on the transformer
architecture and trained on similar data, leading to similar capabilities and limitations. In a homoge-
neous takeoff, this pattern would continue. Perhaps most Al systems would be fine-tuned versions
of a few base models, or different implementations of the same core breakthrough in Al design.
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A factor that could drive homogeneity is the sheer scale required to train advanced Al
systems. If fraining transformative Al requires massive compute resources, as scaling laws suggest,
then only a few organizations might be capable of training base models from scratch. Other
organizations would build on these base models rather than developing entirely new architectures,
leading to more homogeneous systems.

Homogeneous takeoff could be safer in some ways but riskier in others. If we solve
alignment for one Al system, that solution might work for other similar systems. However, if there's
a fundamental flaw in the common architecture or training approach, it could affect all systems
simultaneously. It's like having a monoculture in agriculture - while easier o manage, it's also more
vulnerable to shared weaknesses.

"In‘te.”?gence." }
\

A

Neuro Sym[—;o[]c

.-ﬂ?’ Transformer

SLjrw\F:ac:ht:

—  Time

Homogenous tokeoff

Figure 70: An illustration of homogeneous takeoff. We can see multiple different overarching model

architectures. The figure shows three in different colors. Within each architecture the takeoff is roughly

the same due fo similarity in design, regulations, and safety mitigations. ,NOTE,: The curves here with

architectures are purely illustrative, and are not meant to indicate predicted growth trajectories and
comparisons between different architectures.

A heterogeneous takeoff is when we see significant architectural diversity among
advanced Al systems. Different organizations might develop fundamentally different approaches
to Al, leading to systems with distinct strengths, weaknesses, and behaviors. Some might be spe-
cialized for specific domains while others are more general, some might be more transparent while
others are more opaque, some might be more aligned with human values while others might not
be. Competitive dynamics among Al projects could exacerbate diversity, as teams race to achieve
breakthroughs without necessarily aligning on methodologies or sharing crucial information. As an
example, we might have a future where Al becomes a strategic national asset, and Al development is
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closely guarded. In this environment, the pursuit of Al capabilities becomes siloed, each company
or country would then employ different development methodologies, potentially leading to a wide
range of behaviors, functionalities, and safety levels.

Heterogeneous takeoff creates different challenges for safety. We'd need to develop safety measures
that work across diverse systems, and we couldn’t necessarily apply lessons learned from one system
to others. However, diversity might provide some protection against systemic risks - if one approach
proves dangerous, alternatives would still exist.

The degree of homogeneity during takeoff has significant implications for how transformative Al
might develop. In a homogeneous scenario, progress might be more predictable but also more
prone to winner-take-all dynamics. A heterogeneous scenario might be more robust against single
points of failure but harder to monitor and control.

"Inte.”igence."

A

Neuro St?rmbohc

Transformer

ng!::o[ic

= Time

Heterogenous takeoff

Figure 71: One example of heterogeneous takeoff. We can see multiple different overarching model

architectures. The figure shows three in different colors. Within each architecture the takeoff is different

due to differences in design, regulations, and safety mitigations. ,NOTE,: The curves here with

architectures are purely illustrative, and are not meant to indicate predicted growth trajectories and
comparisons between different architectures.

9.3 Polarity

Polarity describes whether power and capability becomes concentrated in a single Al
system or organization, or remains distributed among multiple actors. In other words, will
one Al system or group pull dramatically ahead of all others, or will multiple Al systems advance in
parallel with comparable capabilities?
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In a unipolar takeoff, one Al system or organization gains a decisive lead over all others.
This could happen through a single breakthrough, exceptional scaling advantages, or recursive self-
improvement. For example, if one Al system becomes capable enough to substantially accelerate its
own development, it might rapidly outpace all other systems. The mathematics of training compute
provide one path to a unipolar outcome. If a doubling of compute leads to reliable improvements
in capability, then an organization that gets far enough ahead in acquiring compute could maintain
or extend their lead. Their improved systems could then help them develop even better training
methods, hardware, and attract investment creating a positive feedback loop that others can’t match.
But compute isn't the only path to unipolarity. A single organization might discover a fundamentally
better training approach, or develop an Al system that's better at improving itself than at helping
humans build alternatives. Once any actor gets far enough ahead, it might become practically
impossible for others to catch up.
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Figure 72: An illustration of unipolar takeoff. One model (dark blue here) significantly outperforms all
others.

In a multipolar takeoff, multiple Al systems or organizations develop advanced capabilities
in parallel. This could look like several large labs developing different but comparably powerful Al
systems, or like many actors having access to similar Al capabilities through open source models
or Al services. Today's Al landscape shows elements of multipolarity - multiple organizations can
train large language models, and techniques developed by one lab are often quickly adopted by
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others. A multipolar takeoff might continue this pattern, with multiple groups maintaining similar
capabilities even as those capabilities become transformative. A unipolar scenario raises concerns
about the concentration of power, while a multipolar world presents challenges in coordination
among diverse entities or Al systems. Both unipolar and multipolar worlds have the potential for
misuse of advanced Al capabilities by human actors.
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Figure 73: An illustration of multipolar takeoff. No model significantly outperforms all others, and they
all takeoff at a roughly competitive rate relative fo each other.

In a unipolar scenario, the actions and alignment of a single system or organization become crucial
- they might gain the ability to shape the longterm future unilaterally. This concentrates risk in a
single point of failure, but might also make coordination easier since fewer actors need to agree. A
multipolar scenario creates different challenges. Multiple advanced systems might act in conflicting
ways or compete for resources. This could create pressure to deploy systems quickly or cut corners
on safety. There's also an important interaction between polarity and the other aspects of takeoff
we've discussed. A fast takeoff might be more likely to become unipolar, as the first system to make
rapid progress could quickly outpace all others. A slow takeoff might tend toward multipolarity,
giving more actors time to catch up to any initial leads.

Factors Influencing Polarity . Several key elements influence whether takeoff polarity leans
towards a unipolar or multipolar outcome:
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10. Appendix: Expert Surveys
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Figure 74: Views about Al's impact on society in the next 20 years, 2021. Survey respondents were
asked, “Will artificial intelligence help or harm people in the next 20 years?” (,Giattino et al., 2023,).
(interactive version on website)
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Figure 75: Views of Americans about robot vs. human intelligence. Survey respondents were asked,
“Which ONE, if any, of the following statements do you MOST agree with?” (,Giaftino et al., 2023,).
(interactive version on website)

10.1 Surveys

According to a recent survey conducted by Al Impact ( Al Impacts, 2022 ): “ Expected time
to human-level performance dropped 1-5 decades since the 2022 survey . As always, our
questions about ‘high-level machine intelligence’” (HLMI) and ‘full automation of labor’ (FAOL) got
very different answers, and individuals disagreed a lot (shown as thin lines below), but the aggregate
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https://ourworldindata.org/artificial-intelligence
https://aiimpacts.org/wp-content/uploads/2023/04/Thousands_of_AI_authors_on_the_future_of_AI.pdf
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forecasts for both sets of questions dropped sharply. For context, between 2016 and 2022 surveys,
the forecast for HLMI had only shifted about a year.”
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Figure 76: 2024 Survey of Al Experts (Al Impacts, 2022,)
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It is also possible to compare the predictions of the same study in 2022 to the current results. It
is interesting to note that the community has generally underestimated the speed of progress over
the year 2023 and has adjusted its predictions downward. Some predictions are quite surprising.
For example, tasks like “Write High School Essay” and “Transcribe Speech” are arguably already
automated with ChatGPT and Whisper, respectively. However, it appears that researchers are not
aware of these results. Additionally, it is surprising that the forecast for when we are able to build an
“Al researcher” has longer timelines than when we are able to build “High-level machine intelligence
(all human tasks)”. The median of the 2024 expert survey predicts human-level machine intelligence
(HLMI) in 2049.

10.2 Quotes

Here are many quotes from people regarding transformative Al.

10.2.1 Al Experts

Note that Hinton, Bengio, and Sutskever are some of the most cited researchers in the field of Al.
And that Hinton, Bengio, and LeCun are the recipients of the Turing Award in Deep Learning . Some
users on reddit have put together a comprehensive list of publicly stated Al timelines forecasts from
famous researchers and industry leaders.

The research question is: how do you prevent them from ever wanting to take
control? And nobody knows the answer [...] The alarm bell I'm ringing has to do
with the existential threat of them taking control [...] If you take the existential risk
seriously, as | now do, it might be quite sensible to just stop developing these things
any further [...] it's as if aliens had landed and people haven't realized because
they speak very good English.

Geoffrey Hinton
Godfather of modern Al, Turing Award Recipient

It's very hard, in terms of your ego and feeling good about what you do, to accept
the idea that the thing you’ve been working on for decades might actually be very
dangerous to humanity... | think that | didn’t want to think too much about it, and
that's probably the case for others [...] Rogue Al may be dangerous for the whole
of humanity. Banning powerful Al systems (say beyond the abilities of GPT-4) that
are given autonomy and agency would be a good start.
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Yoshua Bengio
One of most cited scientists ever, Godfather of modern Al, Turing Award Recipient

If we pursue [our current approach], then we will eventually lose control over the
machines.

Stuart Russell
Co-Author of leading Al textbook, Co-Founder of the Center for Human-Compatible Al

We must take the risks of Al as seriously as other major global challenges, like
climate change. It took the international community too long to coordinate an
effective global response to this, and we're living with the consequences of that
now. We can't afford the same delay with Al [...] then maybe there’s some kind of
equivalent one day of the IAEA, which actually audits these things.

Demis Hassabis
Co-Founder and CEO of DeepMind

When I think of why am | scared [...] | think the thing that's really hard to argue with
is like, there will be powerful models; they will be agentic; we're getting towards
them. If such a model wanted to wreak havoc and destroy humanity or whatever,
| think we have basically no ability to stop it.

Dario Amodei
Co-Founder and CEO of Anthropic, Former Head of Al Safety at OpenAl
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[About a Pause] | don't rule it out. And | think that at some point over the next five
years or so, we're going to have to consider that question very seriously.

Mustafa Suleyman
CEO of Microsoft Al, Co-Founder of DeepMind

The future is going to be good for the Als regardless; it would be nice if it would
be good for humans as well [...] It's not that it's going to actively hate humans
and want to harm them, but it's just going to be too powerful, and | think a good
analogy would be the way humans treat animals [...] And | think by default that's
the kind of relationship that's going to be between us and AGls which are truly
autonomous and operating on their own behalf.

llya Sutskever

One of the most cited scientists ever, Co-Founder and Former Chief Scientist at OpenAl

Do possible risks from Al outweigh other possible existential risks...? It's my number
1 risk for this century [...] A lack of concrete AGI projects is not what worries me,
it's the lack of concrete plans on how to keep these safe that worries me.

Shane Legg

[After resigning at OpenAl, talking about sources of risks] These problems are quite
hard to get right, and | am concerned we aren’t on a trajectory to get there [...]
OpenAl is shouldering an enormous responsibility on behalf of all of humanity. But
over the past years, safety culture and processes have taken a backseat to shiny
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products. We are long overdue in getting incredibly serious about the implications
of AGI.

Jan Leike

Former co-lead of the Superalignment project at OpenAl

[Suggesting about how to ask for a global regulatory body:] “any compute cluster
above a certain extremely high-power threshold — and given the cost here, we're
talking maybe five in the world, something like that — any cluster like that has to
submit to the equivalent of international weapons inspectors” [...] | did a big trip
around the world this year, and talked to heads of state in many of the countries
that would need to participate in this, and there was almost universal support for it.

Sam Altman
Co-Founder and CEO of OpenAl

The exact way the post-AGI world will look is hard to predict — that world will likely
be more different from today’s world than today’s is from the 1500s [...] We do
not yet know how hard it will be to make sure AGls act according to the values of
their operators. Some people believe it will be easy; some people believe it'll be
unimaginably difficult; but no one knows for sure.

Greg Brockman
Co-Founder and Former CTO of OpenAl

[Talking about times near the creation of the first AGI] you have the race dynamics
where everyone’s trying to stay ahead, and that might require compromising on
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safety. So | think you would probably need some coordination among the larger
entities that are doing this kind of training [...] Pause either further training, or

pause deployment, or avoiding certain types of training that we think might be
riskier.

John Schulman
Co-Founder of OpenAl

I’'ve not met anyone in Al labs who says the risk [from training a next-gen model]
is less than 1% of blowing up the planet. It's important that people know lives are
being risked [...] One thing that a pause achieves is that we will not push the
Frontier, in terms of risky ,pre-training, experiments.

Jaan Tallinn
Co-Founder of Skype, Future of Life Institute

10.2.2 Academics

An ultraintelligent machine could design even better machines; there would then
unquestionably be an intelligence explosion’, and the intelligence of man would
be left far behind. Thus the first ultraintelligent machine is the last invention that
man need ever make, provided that the machine is docile enough to tell us how to
keep it under control.

l. ). Good
Cryptologist at Bletchley Park
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It seems probable that once the machine thinking method had started, it would not
take long to outstrip our feeble powers... They would be able to converse with each
other to sharpen their wits. At some stage therefore, we should have to expect the
machines to take control.

Alan Turing

Father of Computer Science and Al

The development of full artificial intelligence could spell the end of the human race
[...] It would take off on its own, and re-design itself at an ever increasing rate.

Stephen Hawking

Theoretical Physicist

| do not expect something actually smart to attack us with marching robot armies
with glowing red eyes where there could be a fun movie about us fighting them.
| expect an actually smarter and uncaring entity will figure out strategies and
technologies that can kill us quickly and reliably and then kill us.

Eliezer Yudkowsky

Al safety researcher, Co-Founder of Machine Intelligence Research Institute

10.2.3 Tech Entrepreneurs

Al is a rare case where | think we need to be proactive in regulation than be
reactive [...] | think that [digital super intelligence] is the single biggest existential
crisis that we face and the most pressing one. It needs to be a public body that
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has insight and then oversight to confirm that everyone is developing Al safely [...]
And mark my words, Al is far more dangerous than nukes. Far. So why do we have
no regulatory oversight? This is insane.

Elon Musk
Founder/Co-Founder of OpenAl, Neuralink, SpaceX, xAl, PayPal, CEO of Tesla, CTO of X/Twitter

Superintelligent Als are in our future. [...] There's the possibility that Als will run out
of control. [Possibly,] a machine could decide that humans are a threat, conclude
that its interests are different from ours, or simply stop caring about us.

Bill Gates

Co-Founder of Microsoft

10.2.4 Joint Declarations

Substantial risks may arise from potential intentional misuse or unintended issues
of control relating to alignment with human intent. These issues are in part because
those capabilities are not fully understood [...] There is potential for serious, even
catastrophic, harm, either deliberate or unintentional, stemming from the most
significant capabilities of these Al models.

The Bletchley Declaration 2023
Multiple Nations & EU
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11. Appendix: Discussion on LLMs

Current LLMs, although trained on abundant data, are still far from perfect.

Will these problems persist in future iterations, or will they disappear? This section examines the
main criticisms of those models and tries to determine if they are valid even for future LLMs.

This kind of qualitative assessment is important to know whether LLMs represent the most likely route
to AGI or not.

11.1 Empirically insufficiency?

Can LLMs be creative? The creativity of LLMs is often debated, but there are clear indications
that Al, in principle, is capable of creative processes in various ways:

Aren’t LLMs just too slow at learning things? Arguments against transformer based language
models often state that they are too sample inefficient, and that LLMs are extremely slow to learn
new concepts when compared to humans. To increase performance in new tasks or situations, it's
often argued that LLMs require training on vast amounts of data — millions of times more than a
human would need. However, there’s a growing trend towards data efficiency, and an increasing
belief that this can be significantly improved in future models.

EfficientZero is a reinforcement learning agent that surpasses median human performance on a set
of 26 Atari games after just two hours of realtime experience per game ( Ye et al., 2021 ; Wang et
al., 2024 ). This is a considerable improvement over previous algorithms, showcasing the potential
leaps in data efficiency. The promise here is not just more efficient learning but also the potential
for rapid adaptation and proficiency in new tasks, akin to a child’s learning speed. EfficientZero is
not an LLM, but it shows that deep learning can sometimes be made efficient.

Scaling laws indicate that larger Als tend to be more data efficient, requiring less data to reach
the same level of performance as their smaller counterparts. Papers such as “Language Models
are Few-Shot Learners” ( Brown et al., 2020 ) and the evidence that larger models seem to take
less data to reach the same level of performance ( Kaplan et al., 2020 ), suggest that as models
scale, they become more proficient with fewer examples. This trend points towards a future where
Al might be able to rapidly adapt and learn from limited data, challenging the notion that Als are
inherently slow learners compared to humans.

Are LLMs robust to distributional shifts? While it is true that Al has not yet achieved maximal
robustness, for example being able to perform perfectly after a change in distribution, there has
been considerable progress:

11.2 Shallow Understanding?

Stochastic Parrots: Do Als only memorize information without truly compressing it? There
are two archetypal ways to represent information in an LLM: either memorize point by point, like
a look-up table, or compress the information by only memorizing higher-level features, which we
can then call “the world model”. This is explained in the very important paper “Superposition,
Memorization, and Double Descent” ( Anthropic, 2023 ): it turns out that fo store points, initially the
model learns the position of all the points (pure memorization), then, if we increase the number of
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points, the model starts to compress this knowledge, and the model is now capable of generalization
(and implements a simple model of the data).

Unfortunately, too few people understand the distinction between memorization
and understanding. It's not some lofty question like ‘does the system have an

internal world model?’, it's a very pragmatic behavior distinction: ‘is the system
capable of broad generalization, or is it limited to local generalization?’

Francois Chollet Chollet, 2023
Prominent Al Researcher
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Figure 77: From Superposition, Memorization, and Double Descent (,Anthropic, 2023,)

Al is capable of compressing information, often in a relevant manner. For example, when examining
the representations of words representing colors in LLMs like “red” and “blue”, the structure
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formed by all the embeddings of those colors creates the correct color circle (This uses a nonlinear
projection such as a T-distributed stochastic neighbor embedding (T-SNE) to project from high-
dimensional space to the 2D plane). Other examples of world models are presented in a paper
called “Eight Things to Know about Large Language Models” ( Bowman, 2023 ).

Of course, there are other domains where Al resembles more of a look-up table, but it is a spectrum,
and each case should be examined individually. For example, for “factual association,” the paper
“Locating and Editing Factual Associations in GPT” shows that the underlying data structure for
GPT-2 is more of a look-up table ( Meng et al., 2023 ), but the paper “Emergent Linear Represen-
tations in World Models of Self-Supervised Sequence Models” demonstrates that a small GPT is
capable of learning a compressed world model of OthelloGpt. ( Nanda et al., 2023 ) There are
more examples in the section dedicated to world models in the paper “Eight Things to Know about
Large Language Models” ( Bowman, 2023 ).

It's clear that LLMs are compressing their representations at least a bit. Many examples of impressive
capabilities are presented in the work “The Stochastic Parrot Hypothesis is debatable for the last
generation of LLMs”, which shows that it cannot be purely a memorization. ( Feuillade-Montixi &
Peigné, 2023 )

Will LLMs Inevitably Hallucinate?

LLMs are prone to “hallucinate,” a term used to describe the generation of content that is nonsensical
or factually incorrect in response to certain prompts. This issue, highlighted in studies such as “On
Faithfulness and Factuality in Abstractive Summarization” by Maynez et al. ( Maynez et al., 2020 )
and “Truthful QA: Measuring How Models Mimic Human Falsehoods” by Lin et al. ( Lin et al., 2022,
poses a significant challenge. However, it's important to see that these challenges are anticipated
due to the training setup and can be mitigated:

Many techniques can be used to increase the truthfulness of LLMs

OPTIONAL NOTE

Finetuning, LLMs for Factuality:, In this paper (,Tian et al., 2023,), the authors recommend ,fine-tuning,
methods using Direct Preference Optimization (DPO) to decrease the rate of hallucinations. By applying
such techniques, a 7B Llama 2 model saw a 58% reduction in factual error rate compared to its original
model.Retrieval Augmented Generation (RAG),. This method works by incorporating a process of
looking up real-world information (retrieval, like a Google search) and then using that information to guide
the Al's responses (generation, based on the document retrieved). By doing so, the Al is better anchored
in factual reality, reducing the chances of producing unrealistic or incorrect content. Essentially, it's like
giving the Al a reference library to check facts against while it learns and responds, ensuring its output is
more grounded in reality. This approach is particularly useful in the context of ,in-context learning,, where
the Al learns from the information and context provided in each interaction.Prompting techniques, in
Al have evolved to include sophisticated methods likeProcess-based training, ensures that the systems
are accustomed to detailing their thoughts in much greater detail and not being able to skip too many
reasoning steps. For example, see OpenAl’s Improving Mathematical Reasoning with process supervision
(,Lightman et al., 2023,).Training for metacognition,: Models can be trained to give the probability of what
they assert, a form of metacognition. For example, the paper “Language Models (Mostly) Know What They
Know” (,Kadavath et al., 2022,) demonstrates that Als can be Bayesian calibrated about their knowledge.
This implies that they can have a rudimentary form of self-awareness, recognizing the likelihood of their
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own accuracy. Informally, this means it is possible to query a chatbot with “Are you sure about what you are
telling me?” and receive a relatively reliable response. This can serve as training against hallucinations.lt's
worth noting that these techniques enable substantial problem mitigation for the current LLMs, but they don’t
solve all the problems that we encounter with Al that are potentially deceptive, as we will see in the chapter
on goal misgeneralization.

11.3 Structural inadequaocy?

Are LLMs missing System 2? System 1 and System 2 are terms popularized by economist Daniel
Kahneman in his book “Thinking, Fast and Slow,” describing the two different ways our brains form
thoughts and make decisions. System 1 is fast, automatic, and intuitive; it's the part of our thinking
that handles everyday decisions and judgments without much effort or conscious deliberation. For
example, when you recognize a face or understand simple sentences, you're typically using System
1. On the other hand, System 2 is slower, more deliberative, and more logical. It takes over when
you're solving a complex problem, making a conscious choice, or focusing on a difficult task.
It requires more energy and is more controlled, handling tasks such as planning for the future,
checking the validity of a complex argument, or any activity that requires deep focus. Together,
these systems interact and influence how we think, make judgments, and decide, highlighting the
complexity of human thought and behavior.

A key concern is whether LLMs are able to emulate System 2 processes, which involve slower, more
deliberate, and logical thinking. Some theoretical arguments about the depth limit in transformers
show that they are provably incapable of internally dividing large integers ( Delétang et al., 2023 ).
However, this is not what we observe in practice: GPT-4 is capable of detailing some calculations
step-by-step and obtaining the expected result through a chain of thought or via the usage of tools
like a code interpreter.

Emerging Metacognition . Emerging functions in LLMs, like the Reflexion technique ( Shinn et
al., 2023 ), allow these models to retrospectively analyze and improve their answers. It is possible
to ask the LLM to take a step back, question the correctness of its previous actions, and consider
ways to improve the previous answer. This greatly enhances the capabilities of GPT-4, enhancing
its capabilities and aligning them more closely with human System 2 operations. Note that this
technique is emergent and does not work well with previous models.

These results suggest a blurring of the lines between these two systems. System 2 processes may
be essentially an assembly of multiple System 1 processes, appearing slower due to involving more
steps and interactions with slower forms of memory. This perspective is paralleled in how language
models operate, with each step in a System 1 process akin to a constant time execution step in
models like GPT. Although these models struggle with intentionally orchestrating these steps to solve
complex problems, breaking down tasks into smaller steps (Least-to-most prompting) or prompting
them for incremental reasoning (Chain-of-Thought (CoTl) prompting) significantly improves their
performance.

Are LLMs missing an internal world model? The notion of a “world model” in Al need not be
confined to explicit encoding within an architecture. Contrary to approaches like H-JEPA ( LeCun,
2022 ), which advocate for an explicit world model to enhance Al training, there's growing evidence
that a world model can be effectively implicit. This concept is particularly evident in reinforcement
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learning (RL), where the distinction between model-based and model-free RL can be somewhat
misleading. Even in model-free RL, algorithms often implicitly encode a form of a world model that
is crucial for optimal performance.

Can LLMs learn continuously, and have long term memory? Continual learning and the
effective management of longterm memory represent significant challenges in the field of Al in
general.

Catastrophic Forgetting . A crucial obstacle in this area is catastrophic forgetting, a phenomenon
where a neural network , upon learning new information, tends to entirely forget previously learned
information. This issue is an important focus of ongoing research, aiming to develop Al systems
that can retain and build upon their knowledge over time. For example, suppose we train an Al on
an Atari game. At the end of the second training, the Al has most likely forgotten how to play the
first game. This is an example of catastrophic forgetting.

But now suppose we frain a large Al on many ATARI games, simultaneously, and even add some
Internet text and some robotic tasks. This can just work. For example, the Al GATO illustrates this
training process and exemplifies what we call the blessing of scale , which is that what is impossible
in small regimes can become possible in large regimes.

Other techniques are being developed to solve long-term memory, for example, Scaffolding-based
approaches have also been employed for achieving long-term memory and continual learning in
Al. Scaffolding in Al refers to the use of hard-coded wrappers explicitly programmed structures by
humans that involve a for loop to query continuously the model:

It should be noted that scaffold-based longterm memory is not considered an elegant solution, and
purists would prefer to use the system’s own weights as long-term memory.

Planning

Planning is an area that Als currently struggle with, but there is significant progress. Some
paradigms, such as those based on scaffolding, enable task decomposition and breaking down
objectives into smaller, more achievable sub-objectives.

Furthermore, the paper “Voyager: An Open-Ended Embodied Agent with Large Language Models”
demonstrates that it is possible to use GPT-4 for planning in Natural language in Minecraft ( Wang
etal., 2023).

1.4 Differences with the brain

It appears that there are several points of convergence between the LLMs and the linguistic cortex:

11.5 Further reasons to continue scaling LLMs

Following are some reasons to believe that labs will continue to scale LLMs.

Scaling Laws on LLM implies further qualitative improvements. The scaling laws might not
initially appear impressive. However, linking these quantitative measures can translate to a qualitative
improvement in algorithm quality. An algorithm that achieves near-perfect loss, though, is one that
necessarily comprehends all subtleties, and displays enormous adaptability. The fact that the scaling
laws are not bending is very significant and means that we can make the model a qualitatively better
reasoner.
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From simple correlations to understanding. During a training run, GPTs go from basic corre-
lations to deeper and deeper understanding. Initially, the model merely establishes connections
between successive words. Gradually, it develops an understanding of grammar and semantics,
creating links between sentences and subsequently between paragraphs. Eventually, GPT masters
the nuances of writing style.

Exercise: Scaling Laws on LLM implies further qualitative improvements

OPTIONAL NOTE

Let's calculate the difference in loss, measured in bits, between two model outputs: “Janelle ate some ice
cream because he likes sweet things like ice cream.” and “Janelle ate some ice cream because she likes
sweet things like ice cream.” The sentence contains approximately twenty tokens. If the model vacillates
between “He” or “She,” choosing randomly (50/50 odds), it incurs a loss of 2 bits on the pronoun token
when incorrect. The loss for other tokens remains the same in both models. However, since the model is
only incorrect half the time, a factor of 1/2 should be applied. This results in a difference of (1/2) * (2/20)
= 1/20, or 0.05 bits. Thus, a model within 0.05 bits of the minimal theoretical loss should be capable of
understanding even more nuanced concepts than the one discussed above.

Text completion is probably an Al-complete test ( Wikipedia, 2022 ).

Current LLMs have only as many parameters as small mammals have synapses, no wonder
they are still imperfect. Models like GPT-4, though very big compared to other models, should
be noted for their relatively modest scale compared to the size of a human brain. To illustrate, the
largest GPT-3 model has a similar number of parameters to the synapses of a hedgehog. We don't
really know how many parameters GPT-4 has, but if it is the same size as PALM, which has 512 B
parameters, then GPT-4 has only as many parameters as a chinchilla has synapses. In contrast, the
human neocortex contains about 140 trillion synapses, which is over 200 times more synapses than
a chinchilla. For a more in-depth discussion on this comparison, see the related discussion here .
For a discussion of the number of parameters necessary to emulate a synapse, see the discussion
on biological anchors.

GPT-4 is still orders of magnitude cheaper than other big science projects. : Despite the
high costs associated with training large models, the significant leaps in Al capabilities provided
by scaling justify these costs. For example, GPT-4 is expensive compared to other ML models.
It is said to cost 50M in training. But the Manhattan Project cost 25B, which is 500 times more
without accounting for inflation, and achieving Human-level intelligence, may be more economically
important than achieving the nuclear bomb.

Collectively, these points support the idea that AGI can be achieved by only scaling current
algorithms.
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