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1. Introduction

The field of artificial intelligence has undergone a remarkable transformation in recent years, and 

this might be only the beginning. This chapter lays the groundwork for the entire book by estab­

lishing what AI systems can currently do, how they achieve these capabilities, and how we might 

anticipate their future development. This understanding is essential for all subsequent chapters: 

the discussion of dangerous capabilities and potential risks (Chapter 2) follows directly from under­

standing capabilities. Similarly, proposed technical (Chapter 3) and governance solutions (Chapter 

4) both must account for the current and projected future of AI capabilities.

Figure 1: We first explain ,foundation models,, which have been continuously showing improved 

capabilities due to scale. Then examine empirically observed scaling laws. Based on these trends we 

look at some techniques that researchers use to try and forecast future AI progress.

State-of-the-Art AI - Achieved breakthrough capabilities across multiple domains . We begin 

by exploring how AI systems have evolved from narrow, specialized tools to increasingly general-

purpose tools. Language models can now engage in complex reasoning, while computer vision 

systems demonstrate sophisticated understanding of visual information. In robotics, we’re seeing 

the emergence of systems that can learn and adapt to real-world environments with increasing 

autonomy. The goal of this section is to give the reader many examples from different domains of 

accelerating AI capabilities.

Foundation models

• Revolutionized how we build AI systems.

The next section explores how we have moved from smaller specialized architectures to large scale 

general-purpose architectures. Rather than building separate systems for each task, these foundation 

models serve as the starting point. They are building blocks that can be later adapted for various 

applications using fine-tuning . We explore how these models are trained, their key properties, and 

the unique challenges they present. The emergence of unexpected capabilities from these models 

raises important questions about both their potential and implications for AI safety.

Understanding Intelligence - Capabilities require precise measurement to guide safety 

work . The objective of this section is to provide an understanding of what terms like artificial 
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general intelligence and artificial superintelligence actually mean in practice. Through detailed case 

studies and empirical observations, we examine different approaches to defining and measuring 

AI capabilities. Moving beyond traditional binary distinctions between “narrow” and “general” AI, 

we introduce more nuanced continuous frameworks that track progress along multiple dimensions.

There is no question that machines will become smarter than humans—in all 

domains in which humans are smart—in the future. It’s a question of when and 

how, not a question of if.

Yann LeCun
Chief AI scientist at Meta and Turing Prize winner

May 2023

Heaven, 2023

Scaling - The bitter lesson and empirical scaling laws show that scale drives progress . 

We explore how simple algorithms plus massive computation often outperform sophisticated hand-

crafted approaches. This leads us to examine scaling laws that describe how AI performance 

improves with different variables like - data, parameter count and increased computational 

resources. This section also contains an examination of the debate around whether scale alone is 

sufficient for achieving transformative AI capabilities.

Forecasting - Predicting capabilities progress helps us prepare safety measures in 

advance . Building on our understanding of current capabilities and scaling behaviors, we examine 

various approaches to anticipating future progress. From biological anchors to trend analysis, we 

explore frameworks for making informed predictions about AI development trajectories. This is very 

important to know when different safety measures need to be in place.

Appendices - Overview of expert opinions on AI, detailed debates around scale, and 

scaling trends. We consider these sections optional, but still useful to those who want to get a 

little bit of a deeper dive. The chapter concludes with appendices examining expert opinions on 

AI progress, deeper discussions about the nature and limitations of large language models, and 

comprehensive data on key trends in AI development.

https://www.technologyreview.com/2023/05/02/1072528/geoffrey-hinton-google-why-scared-ai/
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2. Current Capabilities

AI models can write, reason, code, generate media, and control robots—often matching 

or surpassing expert human performance on specific tasks. In this first section, we’ll try to 

give you a sense of what AI is actually capable of doing as of late 2025. Numbers and graphs 

don’t really make these capabilities tangible, so we will try to include as many videos, images, and 

examples to really help you get a sense of where AI currently stands. But in case you are interested, 

we also mention benchmark scores that measure progress quantitatively.

The trajectory matters more than a snapshot. This section can serve both as a quick history 

and as a snapshot of current capabilities. As you read through it, try to keep in mind how quickly 

we got here. Language generation went from coherent paragraphs to research assistants in a few 

years. Image generation went from laughable to professional-grade in a decade. Video generation 

seems to be following a similar path compressed into three years.

If you’re already familiar with AI or machine learning , some of these stories might be review for 

you, but hopefully everyone who reads will be able to take away at least one new thing from this 

section.

2.1 Games

Game-playing AI is already at the superhuman level for many games. Comparing AI and 

humans at games has been a common theme through the last few decades with AI making contin­

uous progress. IBM’s Deep blue defeated chess grandmaster in 1997 ( IBM, 2026 ), IBM’s Watson 

won overwhelmingly at Jeopardy! in 2011 ( IBM, 2026 ), and AlphaGo managed to beat the Go 

world champion Lee Sedol in 2016 ( DeepMind, 2016 ). AlphaGo was a landmark moment, because 

this is a game with more possible positions than atoms in the observable universe. During game 

2, AlphaGo played Move 37, a move that had a 1 in 10,000 chance of being used. Commentators 

initially thought it was a mistake, instead it was the move that several rounds later led to winning the 

game. The move demonstrated sparks of creativity that diverged from centuries of human play that 

the model was trained on.

https://www.ibm.com/history/deep-blue
https://www.ibm.com/history/watson-jeopardy
https://www.deepmind.com/research/highlighted-research/alphago
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Figure 2: Kasparov, a chess grandmaster, defeated the Chess system DeepBlue in 1996. One year 

later in 1997 he resigned in the last game of the six-game match after 19 moves, granting the win to 

Deep Blue (,IBM, 2026,).

For the first time in the history of mankind, I saw something similar to an artificial 

intellect.

Garry Kasparov
Chess Grandmaster

1997

IBM, 2026

AI’s superhuman game playing capability extends to video games . Machine learning tech­

niques on simple Atari games in 2013 ( Mnih et al., 2013 ) progressed to OpenAI Five defeating 

world champions at DOTA 2 in 2019 ( OpenAI, 2019 ). That same year, DeepMind’s AlphaStar beat 

professional esports players at StarCraft II ( DeepMind, 2019 ). These are games with open ended 

real time environments, requiring thousands of rapid decisions and long-term planning. By 2020 

the MuZero system played Atari games, Go, chess, and shogi without even being told the rules 

( DeepMind, 2020 ).1

1KataGo is a system which is based on techniques used by DeepMind’s AlphaGo Zero and similarly superhuman in 
its game play. In 2022, researchers managed to demonstrate that despite being superhuman KataGo can be beaten 
by humans and demonstrates “surprising failure modes” of AI systems. This is the kind of thing that will be a repeated 
theme throughout our text (,Wang and Gleave et al., 2022,)

https://www.ibm.com/history/deep-blue
https://www.ibm.com/history/deep-blue
https://arxiv.org/abs/1312.5602
https://openai.com/research/openai-five-defeats-dota-2-world-champions
https://deepmind.google/discover/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii/
https://www.deepmind.com/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules
https://arxiv.org/abs/2211.00241
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Figure 3: The history of going from AlphaGo, which was already superhuman in 2016, to MuZero which 

was not only superhuman but was trained without any human data, domain knowledge or knowledge 

of the games rules (,DeepMind, 2020,).

Game playing AI is relatively narrow in what it can do. Despite this it is extremely impressive 

because of the strategic planning, pattern recognition, and adversarial thinking it displays. These 

same reasoning abilities—planning ahead, building strategies, adapting to feedback—that started 

with game playing now also apply to scientific research, mathematical proofs, and complex real-

world problem-solving.

Example of Voyager: Planning and Continuous Learning in Minecraft with 

GPT-4

OPTIONAL NOTE

https://deepmind.google/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/
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AIs can construct long term strategies and play games in open ended dynamic environments. The various 

Alpha series of models in the 2020s did not use LLMs. But in 2023, Voyager—an AI system powered by 

GPT-4—demonstrated that a LLM powered system could play Minecraft (,Wang et al., 2023,). Minecraft, 

if you are not familiar, provides a sandbox where you must complete tasks in sequence: gather wood, 

craft basic tools, mine stone, smelt iron, craft better tools, and eventually mine diamonds. This requires 

planning hundreds of steps ahead and long term strategic planning. Since 2023 we have seen several game 

playing systems based around LLMs showcasing a variety of capabilities. For example, in strategy games, 

Meta’s Cicero displayed intricate strategic negotiation and deception skills in natural language for the game 

Diplomacy (,Bakhtin et al., 2022,).

Figure 4: Voyager discovers new Minecraft items and skills continually by self-driven exploration, 

significantly outperforming the baselines (,Wang et al., 2023,).

2.2 Text Generation

Generating text can take language models far beyond simple conversations. You’re probably 

familiar with ChatGPT. These types of language generation AIs are what we call large language 

models (LLMs). In 2018, early versions of these LMs could only write a few coherent paragraphs. But 

over a few short years, they have gotten a lot better. By 2025, GPT-5 gets 92.5% of questions right 

in domains ranging from highly complex STEM fields, international law, to nutrition and religion 

(as measured by the MMLU benchmark). Models like Claude by Anthropic, Grok by X, GLM-4.7 

by Zhipu AI, and DeepSeek-v3.2 showcased similar levels of performance across various domains 

( ArtificialAnalysis, 2025 ; EpochAI, 2025 ).

https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2210.05492
https://arxiv.org/abs/2305.16291
https://artificialanalysis.ai/evaluations/artificial-analysis-intelligence-index
https://epoch.ai/benchmarks/eci
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Figure 5: In a few short years, LLMs have gone from being barely useful to being regularly used coding 

assistants (,AI Digest, 2023,).

https://theaidigest.org/progress-and-dangers
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Figure 6: Performance on common exams as a percentile compared to human test takers. Notice the 

large jump from GPT-3.5 to GPT-4 on these tests, often from well below the median human to the very 

top of the human range (,Aschenbrenner, 2024,;, OpenAI, 2023,). The jump from GPT-3 to GPT-4 was 

in a single year.

https://situational-awareness.ai/from-gpt-4-to-agi/
https://arxiv.org/abs/2303.08774
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Figure 7: We are seeing an explosion in language models due to their generality, and applicability to 

a wide range of tasks (,Giattino et al., 2023,). (interactive version on website)

https://ourworldindata.org/grapher/cumulative-number-of-large-scale-ai-models-by-domain


Chapter 1: Capabilities 12

Figure 8: A list of ‘Nowhere near solved’ […] problems in AI, from ‘A brief history of AI’, published in 

January 2021 (,Wooldridge, 2021,). They also say: ‘At present, we have no idea how to get computers 

to do the tasks at the bottom of the list’. But everything in the category ‘Nowhere near solved’ has been 

solved by GPT-4 (,Bubeck et al., 2023,), except human-level general intelligence.

Language models have provided a core around which we have seen many impressive capabilities 

emerge like - scientific research, reasoning, and software development. All of these capabilities 

stem from the same principle of generating language and gradually refining it.

2.3 Tool Use

LLMs can intelligently use external tools, dramatically boosting performance. Language 

models exhibit remarkable abilities to solve new tasks from instructions, but they used to struggle 

https://www.amazon.com/Brief-History-Artificial-Intelligence-Where/dp/1250770742
https://arxiv.org/abs/2303.12712
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with basic functions like arithmetic. Instead of trying to get a single model to do everything, 

increasingly LLMs use external tools to achieve both capabilities ( Schick et al., 2023 ; Qin et 

al., 2023 ). They recognize when they need a calculator, code interpreter, or search engine—and 

call these tools appropriately.2 Tool use significantly improves model performance; for example, 

the OpenAI o3 model with external tools outperforms o3 alone by almost 5% on benchmarks like 

Humanities Last Exam (HLE) ( EpochAI, 2025 ). In December 2025, at least 10,000 tool servers 

are operational, including meta tools like ‘a tool to search for tools’ to help LLMs find the exact one 

they need for the specific situation ( Anthropic, 2025 ; Anthropic, 2025 ).

Figure 9: A simple example from Toolformer. The model autonomously decides to call different APIs 

(from top to bottom: a question answering system, a calculator, a machine translation system, and a 

Wikipedia search engine) to obtain information that is useful for completing a piece of text (,Schick et 

al., 2023,).

2Standards like the Model Context Protocol (MCP) are formalizing how AI assistants connect to data repositories and 
development environments (,Anthropic, 2024,). The MCP protocol has been donated to the Linux foundation(,An­
thropic, 2025,).

https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://epoch.ai/gradient-updates/three-issues-undermining-compute-based-ai-policies
https://www.anthropic.com/engineering/advanced-tool-use
https://www.anthropic.com/news/donating-the-model-context-protocol-and-establishing-of-the-agentic-ai-foundation
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/donating-the-model-context-protocol-and-establishing-of-the-agentic-ai-foundation
https://www.anthropic.com/news/donating-the-model-context-protocol-and-establishing-of-the-agentic-ai-foundation
https://www.anthropic.com/news/donating-the-model-context-protocol-and-establishing-of-the-agentic-ai-foundation
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2.4 Reasoning and Research

Models now demonstrate multi-step reasoning by working through problems step-by-step. 

In addition to using tools, LLMs now show their reasoning, catch their own errors, and backtrack 

when needed. In late 2024, OpenAI introduced o1, the first “reasoning” model. These AIs allocate 

more effort per problem—trading “thinking time” for accuracy. The longer they think, the better 

their responses tend to get ( OpenAI, 2024 ). Using these reasoning techniques, both OpenAI 

and Google DeepMind achieved gold-medal performance at the 2025 International Mathematical 

Olympiad ( OpenAI, 2025 ; Google DeepMind, 2025 ). On FrontierMath—a test of research-level 

mathematics—GPT-5.2 solved 41% of tier 1-3 problems ( EpochAI, 2026 ).1

Figure 10: A sample of an “easy” tier-1 problem from FrontierMath - an extremely difficult mathematics 

test created by mathematicians. GPT-5.2 can solve 41% of tier 1-3 problems, and 29% of the even harder 

tier 4 problems (,EpochAI, 2025,).

LLMs can help generate and evaluate scientific hypotheses. Combining techniques like 

letting AI think for longer, and tools like web-search or specialized AI models, we are starting to 

see research assistants. As one example, Google introduced AI co-scientist in 2025. The team 

used it to generate and evaluate proposals for repurposing drugs, identifying drug targets, and 

explaining antimicrobial resistance in real-world laboratories ( Google DeepMind, 2025 ). Others 

have attempted to build a fully autonomous AI scientist, which generates novel research ideas, 

writes code, executes experiments, visualizes results, describes its findings by writing a full scientific 

paper, and then runs a simulated review process for evaluation ( SakanaAI, 2024 ).

https://openai.com/o1/
https://x.com/OpenAI/status/1946594928945148246
https://deepmind.google/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://epoch.ai/frontiermath
https://epoch.ai/frontiermath/benchmark-problems
https://arxiv.org/abs/2502.18864
https://arxiv.org/abs/2408.06292
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Figure 11: An example of the Google Co-Scientist. You can see the “thinking time” labelled as test time 

compute increasing on the left (,Google DeepMind, 2025,).

AI is transitioning to an active research collaborator across scientific domains. Instead of 

only using language models, companies are also using approaches similar to AlphaZero to create 

a whole range of specialized models for scientific domains. For example, Demis Hassabis & John 

Jumper were awarded the nobel prize in chemistry for their work on building AlphaFold ( Google 

DeepMind, 2024 ). This is a model that helped solve the long outstanding protein folding problem 

( Google DeepMind, 2022 ), and its successors AlphaFold 2 and 3 continue to aid thousands of 

researchers in biology ( DeepMind, 2024 ). Similarly, AlphaGenome is helping us better understand 

human DNA ( Google DeepMind, 2025 ). AlphaEvolve is helping generate faster algorithms for 

machine learning ( Google DeepMind, 2025 ), and AlphaChip helps design the semiconductors 

that run algorithms ( Google DeepMind, 2024 ).

https://arxiv.org/abs/2502.18864
https://deepmind.google/blog/demis-hassabis-john-jumper-awarded-nobel-prize-in-chemistry/
https://deepmind.google/blog/demis-hassabis-john-jumper-awarded-nobel-prize-in-chemistry/
https://deepmind.google/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology/
https://deepmind.google/science/alphafold/
https://deepmind.google/blog/alphagenome-ai-for-better-understanding-the-genome/
https://deepmind.google/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://deepmind.google/blog/how-alphachip-transformed-computer-chip-design/
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Figure 12: Animation showing AlphaGenome taking one million DNA letters as input and predicting 

diverse molecular properties across different tissues and cell types (,Google DeepMind, 2025,)

Beyond just mathematics and scientific research, AI models are also developing more 

abstract intellectual skills. LLMs have some level of metacognition, they can evaluate the validity 

of their own claims and predict which questions they will be able to answer correctly ( Kadavath, 

2022 ). They have some knowledge about their own selves and their limitations. Similarly, they 

display the ability to attribute mental states to themselves and others (theory of mind). This helps in 

predicting human behaviors and responses ( Kosinski 2023 ; Xu et al., 2024 ). We are going to 

talk more about how we concretely define and measure things like intelligence, meta-cognition and 

so on in later sections.

https://deepmind.google/blog/alphagenome-ai-for-better-understanding-the-genome/
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2302.02083
https://arxiv.org/abs/2402.06044
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Figure 13: An example puzzle from the abstraction and reasoning corpus for AI (ARC-AGI v1). These 

are designed to be easy for humans, but very hard for AIs. Models are able to solve increasing numbers 

of such abstract reasoning puzzles, especially with the advent of large reasoning models (LRMs) in 

2025 (,ARC-AGI, 2024,; ,Chollet et. al, 2024,).

2.5 Software Development

Coding is evolving from autocomplete to collaborative software development. LLMs can 

generate text in any form, and one particular type of text that they are proving to be especially good 

at is generating code. When paired with reasoning capabilities, and tools LLMs read documentation, 

edit codebases spanning thousands of files, run tests, debug failures, and iterate until tests pass—

with increasingly minimal human guidance. In 2025 systems like Claude Opus 4.5, Gemini 3 Pro, 

and GPT-5.2 implement features and entire applications increasingly independently ( Anthropic, 

2025 ; Google DeepMind, 2025 ; OpenAI, 2025 ). When tested against real GitHub issues from 

open-source projects— in 2024 AI systems (Claude 3 Opus) could solve just 15% problems, but 

by 2025, this had jumped to being able to solve 74% of issues (Tools + Claude 4 Opus) ( SWE 

bench, 2025 ).

Figure 14: AI systems now develop themselves. Boris Cherny, creator of Claude Code—Anthropic’s AI-

powered software development tool—stated in December 2025 that 100% of his contributions to Claude 

Code over the previous thirty days were written by Claude Code itself (,Cherny, 2025, Twitter,).

https://arcprize.org/arc-agi/1/
https://arxiv.org/abs/2412.04604
https://www.anthropic.com/claude/opus
https://www.anthropic.com/claude/opus
https://deepmind.google/models/gemini/
https://openai.com/index/introducing-gpt-5-2/
https://www.swebench.com/
https://www.swebench.com/
https://x.com/bcherny/status/2004897269674639461
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2.6 Vision: Images and Video

Image generation progressed from unrecognizable noise to photorealistic scenes in under 

a decade. In 2014, Generative Adversarial Networks (GANs) produced grainy, low-resolution faces 

[CITATION: GAN paper]. By 2023, models generated detailed images from complex text prompts. 

Models like Midjourney v7 create photorealistic scenes nearly indistinguishable from professional 

photography. Video generation is following a similar trajectory. AI generated videos and DeepFakes 

are getting increasingly indistinguishable from real videos.

Figure 15: An example of the evolution of image generation. At the top left, starting from GANs 

(Generative Adversarial Networks) to the bottom right, an image from MidJourney V5.

Figure 16: Improvements between the V1 of the MidJourney image generation model in early 2022, 

to the V6 in December 2023. Prompt: high-quality photography of a young Japanese woman smiling, 

backlighting, natural pale light, film camera, by Rinko Kawauchi, HDR (,Yap, 2024,).

https://goldpenguin.org/blog/midjourney-v1-to-v6-evolution/
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Large Multimodal Models (LMMs) combine language and image understanding capabilities. 

In 2025, multimodal models answer questions about spatial relationships in images, read embed­

ded text in complex scenes, and extract information from charts and diagrams. Image models 

released in 2025 handle generation and sophisticated editing across modalities. Systems like 

Gemini 3 Pro Image work text-to-image, image-to-image, and handle complex editing—changing 

lighting, style, or composition while maintaining coherence ( Google, 2025 ).

Figure 17: Example of extending video and image generation to an interactive world. This was 

generated by DeepMind Genie 3. The bottom left arrows indicate the user interacting with the generated 

environment (,DeepMind, 2025,).

2.7 Robotics

Both AI and robotics are evolving, with robots giving AI physical embodiment in the 

real world. Robotics is combining LLMs and visual models, to create robot control models (e.g. 

RT-1 or RT-2). These robots can use techniques borrowed from language models—like breaking 

complex actions into step-by-step plans—to control robot manipulators ( Google DeepMind, 2024 ). 

They managed to learn behaviors like opening cabinets, operating elevators, and cooking tasks 

through observing human demonstrations. Robots have demonstrated the ability to perform intricate 

manipulation: sautéing shrimp, storing heavy pots in cabinets, and rinsing pans ( Fu et al., 2024 ).

https://deepmind.google/models/gemini/pro/
https://deepmind.google/blog/genie-3-a-new-frontier-for-world-models/
https://deepmind.google/blog/shaping-the-future-of-advanced-robotics/
https://arxiv.org/abs/2401.02117
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Figure 18: SARA-RT-2 model for manipulation tasks. The robot’s actions are conditioned on images 

and text commands (,Google DeepMind, 2024,).

Autonomous robots are moving from research labs into real-world industrial deployment 

at significant scale. In 2023, China installed 276,300 industrial robots ( AI Index Report, 2025 ). 

These systems handle welding, parts assembly, materials handling, and quality inspection—tasks 

requiring precision but not necessarily advanced reasoning. In addition to industrial robots, ware­

house robotics represents one of the most mature deployments—Amazon operates over 1 million 

robots across its fulfillment network, handling everything from inventory storage to package sorting 

( Amazon, 2025 ). Robots in warehouses and industry are able to handle packages, speed up 

inventory identification using machine vision, and autonomously unload shipping containers.

https://deepmind.google/blog/shaping-the-future-of-advanced-robotics/
https://arxiv.org/abs/2504.07139
https://www.aboutamazon.com/news/operations/amazon-robotics-robots-fulfillment-center
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Figure 19: Boston Dynamics’ Stretch robot that can autonomously unload shipping containers, lift up 

to 50 pounds, and clear away missed boxes along the way (,Boston Dynamics, 2024,).

Figure 20: Amazon has a huge fleet of robots that automate it’s warehouses. This is an example of 

the Hercules robot that retrieves shelves of products and delivers them to employees, who then pick the 

items customers ordered for shipping (,Amazon, 2023,).

https://bostondynamics.com/products/stretch/
https://www.aboutamazon.com/news/operations/amazon-hercules-robot
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3. Foundation Models

Foundation models represent a fundamental shift in how we develop AI. Rather than building 

specialized models for many small specific tasks, we can now train large-scale models that serve 

as a “foundation” for many different applications. These models are then specialized later by a 

process called fine-tuning to perform specific tasks. Think of this as similar to how we can build 

many different types of buildings using the same base structure ( Bommasani et al., 2022 ). We can 

build banks, restaurants, or housing but the underlying foundation remains largely the same. This 

is just a very quick intuitive definition. We will get more into the details in the next few subsections 

on training, properties and risks.

The traditional approach of training specialized AI models for every task often proved 

inefficient and limiting. Progress was bottlenecked by the need for human-labeled data and 

the inability to transfer knowledge between tasks effectively. Foundation models overcame these 

limitations through a process called self-supervised learning on massive unlabeled datasets. This 

breakthrough happened because of many different reasons - advances in specialized hardware like 

GPUs, new machine learning architectures like transformers, and increased access to huge amounts 

of online data ( Kaplan et al., 2020 ) are some of the more prominent reasons for this shift.

In language processing, models like GPT-4 and Claude are examples of foundation models . Both 

of these have demonstrated the ability to generate human language, have complex conversations 

and perform simple reasoning tasks ( OpenAI, 2023 ). Examples in computer vision include models 

like DALL-E 3 and Stable Diffusion. ( Betker et al., 2023 ) These are domain specific examples, 

but we are also seeing a trend toward multimodal foundation models (LMMs). This includes things 

like GPT-4V and Gemini that can work across different types of data - processing and generating 

text, images, code, audio and probably more in the future ( Google, 2023 ). Even in reinforcement 

learning, where models were traditionally trained for specific tasks, we’re seeing foundation models 

like Gato demonstrate the ability to learn general-purpose behaviors that can be adapted to various 

different downstream tasks ( Reed et al., 2022 ).

Figure 21: Number of large-scale AI systems released per year. Describes the specific area, appli

cation, or field in which a large-scale AI model is designed to operate. The 2025 data is incomplete 

and was last updated 01 June 2025 (,Giattino et al., 2023,). (interactive version on website)

https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2303.08774
https://cdn.openai.com/papers/dall-e-3.pdf
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2205.06175
https://ourworldindata.org/artificial-intelligence
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Foundation models mark a paradigm shift towards general-purpose systems. This paradigm 

introduces many new risks which didn’t exist previously. These include misuse risks from power 

centralization, homogenization, and dual-use capabilities just to name a few. The ability of founda­

tion models to learn broad, transferable capabilities has led to increasingly sophisticated behaviors 

emerging from relatively simple training objectives ( Wei et al., 2022 ). Complex capabilities, 

combined with generality and scale, means we need to seriously consider safety risks beyond just 

misuse that previously seemed theoretical or distant. Beyond just misuse risk, things like misalign­

ment are becoming an increasing concern with each new capability that these foundation models 

exhibit. We dedicate an entire chapter to the discussion of these risks. But we will also give you a 

small taste on the kinds of possible risks in the next few subsections, as it warrants some repetition.

Figure 22: Cumulative number of large-scale AI models by domain since 2017. Describes the specific 

area, application, or field in which a large-scale AI model is designed to operate (,Giattino et al., 

2023,). (interactive version on website)

What is the difference between foundation models and frontier models? Frontier models 

represent the cutting edge of AI capabilities - they are the most advanced models in their respective 

domains. While many frontier models are also foundation models (like Claude 3.5 Sonnet), this 

isn’t always the case. For example, AlphaFold, while being a frontier model in protein structure 

prediction, isn’t typically considered a foundation model because it’s specialized for a single task 

rather than serving as a general foundation for multiple applications ( Jumper et al., 2021 ).

3.1 Training

How are foundation models trained differently from traditional AI systems? One key innova­

tion of foundation models is their training paradigm. Generally, foundation models use a two-stage 

training process. First, they go through what we call a pre-training , and then second, they can 

be adapted through various mechanisms like fine-tuning or scaffolding to perform specific tasks. 

Rather than learning from human-labeled examples for specific tasks, these models learn by finding 

patterns in huge amounts of unlabeled data.

https://arxiv.org/abs/2206.07682
https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/artificial-intelligence
https://pubmed.ncbi.nlm.nih.gov/34265844/
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Figure 23: On the Opportunities and Risks of ,Foundation Models, (,Bommasani et al., 2022,)

What is pre-training ? Pre-training is the initial phase where the model learns general patterns 

and knowledge from massive datasets of millions or billions of examples. During this phase, the 

model isn’t trained for any specific task - instead, it develops broad capabilities that can later be 

specialized. This generality is both powerful and concerning from a safety perspective. While it 

enables the model to adapt to many different tasks, it also means we can’t easily predict or constrain 

what the model might learn to do ( Hendrycks et al., 2022 ).

Figure 24: On the Opportunities and Risks of ,Foundation Models, (,Bommasani et al., 2022,)

How does self-supervised learning enable pre-training ? Self-supervised learning (SSL) is the key 

technical innovation that makes foundation models possible. This is how we actually implement the 

pre-training phase. Unlike traditional supervised learning , which requires human-labeled data, SSL 

leverages the inherent structure of the data itself to create training signals. For example, instead 

of manually labeling images, we might just hide part of a full image we already have and ask a 

model to predict what the rest should be. So it might predict the bottom half of an image given 

the top half, learning about which objects often appear together. As an example, it might learn that 

https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2109.13916
https://arxiv.org/abs/2108.07258
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images with trees and grass at the top often have more grass, or maybe a path, at the bottom. It 

learns about objects and their context - trees and grass often appear in parks, dogs are often found 

in these environments, paths are usually horizontal, and so on. These learned representations can 

then be used for a wide variety of tasks that the model was not explicitly trained for, like identifying 

dogs in images, or recognizing parks - all without any human-provided labels! The same concept 

applies in language, a model might predict the next word in a sentence, such as “The cat sat on the 

… ,” learning grammar, syntax, and context as long as we repeat this over huge amounts of text.

What is fine-tuning ? After pre-training , foundation models can be adapted through two main 

approaches: fine-tuning and prompting. Fine-tuning involves additional training on a specific task 

or dataset to specialize the model’s capabilities. For example, we might use Reinforcement Learning 

from Human Feedback (RLHF) to make language models better at following instructions or being 

more helpful. Prompting, on the other hand, involves providing the model with carefully crafted 

inputs that guide it toward desired behaviors without additional training.

Why does this training process matter for AI safety? The training process of foundation models 

creates several unique safety challenges. First, the self-supervised nature of pre-training means 

we have limited control over what the model learns - it might develop unintended capabilities or 

behaviors. Second, the adaptation process needs to reliably preserve any safety properties we’ve 

established during pre-training . Finally, the massive scale of training data and compute makes it 

difficult to thoroughly understand or audit what the model has learned. Many of the safety challenges 

we’ll discuss throughout this book - from goal misgeneralization to scalable oversight - are deeply 

connected to how these models are trained and adapted.

3.2 Properties

Why do we need to understand the properties of foundation models ? Besides just under­

standing the training process, we also need to understand the key defining characteristics or the 

abilities of these models. These properties often determine both the capabilities and potential 

risks of these systems. They help explain why foundation models pose unique safety challenges 

compared to traditional AI systems. Their ability to transfer knowledge, generalize across many 

different domains, and develop emergent capabilities means we can’t rely on traditional safety 

approaches that assume narrow, predictable behavior.

What is transfer learning ? Transfer learning is one of the most fundamental properties of founda­

tion models

• their ability to transfer knowledge learned during

pre-training to new tasks and domains. Rather than starting from scratch for each task, we can 

leverage the general knowledge these models have already acquired ( Bommasani et al., 2022 ). 

This property enables rapid adaptation and deployment, it also means that both capabilities and 

safety risks can transfer in unexpected ways. For example, a model might transfer not just useful 

knowledge but also harmful biases or undesired behaviors to new applications.

What are zero-shot and few-shot learning ? The ability to perform new tasks with very few 

examples, or even no examples at all. For example, GPT-4 can solve novel reasoning problems just 

from a natural language description of the task ( OpenAI, 2023 ). This emergent ability to generalize 

to new situations is powerful but concerning from a safety perspective. If models can adapt to 

novel situations in unexpected ways, it becomes harder to predict and control their behavior in 

deployment.

https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2303.08774
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Generalization in foundation models works differently from traditional AI systems. Rather than just 

generalizing within a narrow domain, these models can generalize capabilities across domains in 

surprising ways. However, this generalization of capabilities often happens without a corresponding 

generalization of goals or constraints - a critical safety concern we’ll explore in detail in our chapter 

on goal misgeneralization. For example, a model might generalize its ability to manipulate text in 

unexpected ways without maintaining the safety constraints we intended ( Hendrycks et al., 2022 ).

Figure 25: On the Opportunities and Risks of ,Foundation Models, (,Bommasani et al., 2022,)

Multimodality, will definitely be important. Speech in, speech out, images, eventu

ally video. Clearly, people really want that. Customizability and personalization 

will also be very important.

Sam Altman
CEO of OpenAI

Jan 2024

Cronshaw, 2024

https://arxiv.org/abs/2109.13916
https://arxiv.org/abs/2108.07258
https://www.linkedin.com/pulse/altman-multimodality-important-david-cronshaw-5fz0c
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4. Defining and Measuring AGI

Before we can discuss AI safety, we need to agree on what we mean by AGI. In our previous 

section on foundation models , we saw how modern AI systems are becoming increasingly powerful 

and general-purpose. But powerful at what, exactly? Some researchers claim we’re already seeing 

“sparks” of AGI in the latest language models ( Bubeck et al., 2023 ). Others predict human-level AI 

within a decade ( Bengio et al., 2023 ). But human level at what exactly? How do we measure this? 

Without a clear definition, how do we assess such claims or plan appropriate safety measures?

If you can’t define something, you can’t measure it. If you can’t measure it, you can’t reliably 

track progress, identify or prepare for risks. Think about an example from physics. If we want to 

design and enforce speed limits for cars, saying something “moved 5” makes no sense without 

units. Did it move 5 meters, 5 feet, or 5 royal cubits? If we don’t know how far or fast it moved, we 

can’t enforce limits. The same applies to intelligence and subsequent safety measures. Every field 

needs standardized units - meters, watts, joules - to advance beyond vague descriptions. We need 

to treat AI safety with the same rigor to move past hand-waving about “intelligence.”

Defining general intelligence is extremely challenging. Everyone agrees we need a definition 

to measure progress and design safety measures. So why don’t we have one? The problem is 

that intelligence describes multiple overlapping abilities - problem-solving, learning, adaptation, 

abstract reasoning. Different disciplines view it through different lenses. Psychologists emphasize 

measurable cognitive skills. Computer scientists focus on task performance. Philosophers debate 

consciousness and self-awareness. Which approach matters most for AI safety? We go through a 

couple of case studies and previous attempts at a definition before giving the definitions we will 

be using for this text.

4.1 Case Studies

Alan Turing suggested we could sidestep the whole mess by focusing on behavior. If 

a machine could imitate human conversation well enough to fool an interrogator, it should be 

considered intelligent ( Turing, 1950 ). The behaviorist approach is simple - forget about internal 

mental states and focus on observable behavior. Can the system do the thing or not? Unfortunately, 

LLMs exposed some limitations to this approach. GPT-4 can pass Turing-style conversation tests 

while struggling with basic spatial reasoning or maintaining coherent long-term plans ( Rapaport, 

2020 ). The test was too narrow. Conversation is just one capability among many we care about. 

But Turing’s core insight - focus on observable capabilities, not internal states - remains sound.

Consciousness based approaches to general intelligence focus on “true understanding.” 

John Searle’s Chinese Room argument suggested that systems might appear intelligent (stochastic 

parrots) without truly understanding - processing symbols without grasping their meaning ( Searle, 

1980 ). This view emphasizes internal cognitive states similar to human consciousness. The problem 

is that consciousness often proves even harder to define than intelligence. We are also unsure 

if intelligence and consciousness are necessarily linked - a system could potentially be highly 

intelligent without being conscious, or conscious without being particularly intelligent. AlphaGo is 

very intelligent within the context of playing Go, but it is clearly not conscious. A system doesn’t 

need to be conscious to cause harm. Whether an AI system is conscious has little, if any, bearing 

https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2310.17688
https://academic.oup.com/mind/article/LIX/236/433/986238?login=false
https://sciendo.com/issue/JAGI/11/2
https://sciendo.com/issue/JAGI/11/2
https://psycnet.apa.org/record/1981-27235-001
https://psycnet.apa.org/record/1981-27235-001
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on its ability to make high-impact decisions or take potentially dangerous actions.3 Research into 

consciousness, sentience, and meta-ethical debates about the fundamental nature of intelligence 

are valuable, but less actionable for the type of safety work that this text focuses on.

Defining intelligence through goal achievement. Shane Legg and Marcus Hutter propose: “ 

Intelligence measures an agent’s ability to achieve goals in a wide range of environments “ ( Legg & 

Hutter, 2007 ). This captures something important - intelligent systems should be able to figure out 

how to get what they want across different situations. But it’s too abstract for practical measurement. 

How are agents defined? Which goals? Which environments? How do you actually test this? The 

intuition is right, but we need something more concrete.

Process and adaptability focused views see intelligence as learning efficiency rather than 

accumulated skills. Some researchers define intelligence through adaptability: “ the capacity 

of a system to adapt to its environment while operating with insufficient knowledge and resources 

“ ( Wang, 2020 ), or “ the efficiency with which a system can turn experience and priors into skills 

“ ( Chollet, 2019 ). They argue that general intelligence is not demonstrated by the possession of 

a specific skill, but by the efficiency of acquiring new skills when faced with novel problems. High 

performance can be “bought” with sufficient data and compute, an AI that achieves superhuman 

performance at Go has mastered Go; it has not necessarily become more intelligent in a general 

sense. This makes sense - the ability to learn quickly from limited data in new situations matters. A 

system that needs a billion examples to learn what humans get from ten examples might be less 

impressive even if both reach the same final capability. But purely from a safety perspective, does 

the learning path matter more than the destination? If a system can perform dangerous tasks whether 

through efficient learning or brute-force memorization, the risks exist either way.

Psychologists use standardized tests and measure cognitive abilities directly. Psychometric 

traditions like the Cattell-Horn-Carroll (CHC) theory, break intelligence into measurable cognitive 

domains - reasoning, memory, processing speed, spatial ability ( Schneider & McGrew, 2018 ). IQ 

tests aren’t perfect, but they predict real-world outcomes better than vague philosophical debates 

about “true understanding.” This benchmarking and test based framework gives us concrete 

domains to measure and track.

When discussing AI risks, talk about capabilities, not intelligence… People often 

have different definitions of intelligence, or associate it with concepts like con

sciousness that are not relevant to AI risks, or dismiss the risks because intelligence 

is not well-defined.

Victoria Krakovna
Senior research scientist at Google DeepMind

Aug 2023

Krakovna, 2023

3We measure qualities like “sitational-awareness” in our chapters on risks, and evaluations using specific bench­
marks. So we capture a model of the self and future planning, while distinguishing these aspects from conversations 
about consciousness.

https://arxiv.org/abs/0712.3329
https://arxiv.org/abs/0712.3329
https://sciendo.com/issue/JAGI/11/2
https://arxiv.org/abs/1911.01547
https://onlinelibrary.wiley.com/doi/10.1002/9781118660584.ese0431
https://www.alignmentforum.org/posts/JtuTQgp9Wnd6R6F5s/when-discussing-ai-risks-talk-about-capabilities-not
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Behaviorist (capabilities focused) approaches matter most for safety. If an AI system can 

perform dangerous tasks at human-level or beyond - sophisticated planning, manipulation, decep­

tion - these risks exist regardless of how it achieved them. Did it learn efficiently or through brute 

force? Is it conscious or just pattern-matching? These questions don’t change the risk profile. 

OpenAI defines AGI as “ highly autonomous systems that outperform humans at most economically 

valuable work “ ( OpenAI, 2023 ). Anthropic frames their mission around ensuring “ transformative 

AI helps people and society “ ( Anthropic, 2024 ). Both focus on what systems can do, and less on 

how they do it. But even these capability-based definitions can be too vague. Which humans are the 

measure - top experts or average workers? What counts as economically valuable - just current jobs 

or future ones? What about systems that excel at complex tasks but only work for short periods or 

require massive compute? The definitions point in the right direction but lack precision for tracking 

progress and identifying risks.

Our approach attempts to synthesize the useful parts of all these views. We adopt the 

behaviorist insight from Turing - primarily focusing on what systems can observably do. We use 

the psychometric tradition’s concrete measurement framework from CHC theory. We acknowledge 

and incorporate the adaptability focused view’s point about efficient learning but prioritize final 

capabilities. And we set aside the consciousness debate as not actionable for safety work.

We need a framework that’s both concrete and continuous. Concrete enough to measure what 

systems can do right now while also being able to identify thresholds for regulation, and emerging 

risks before they materialize. It has to be continuous to capture progress along multiple dimensions 

rather than forcing everything into binary categories that lead to endless semantic debates about 

whether something “counts” as AGI. That’s what we build in the next section: capability and 

generality as two continuous axes that let us describe any AI system precisely.

4.2 Defining General Intelligence

AGI exists on a continuous spectrum measured by two dimensions: capability and gener

ality. Capability measures how well a system executes specific cognitive tasks - from 0% (can’t do 

the task at all) to expert human level (outperforming roughly 80-90% of humans on that specific task) 

to superhuman (outperforming 100% of humans). Generality measures breadth - the percentage of 

cognitive domains where a system achieves expert-level capability. Together, these give us concrete 

statements like “our AI system can outperform 85% of humans in 30% of cognitive domains.” This 

precisely describes any AI system’s capabilities.

Capability measures depth - how good is the system at individual tasks. For decades, AI 

research focused on making systems excel at single tasks. Early chess programs in the 1950s beat 

novices but lost to experts. Deep Blue in the 1990s beat world champion Kasparov. AlphaGo in 

2016 achieved superhuman capability at Go, a game humans thought computers wouldn’t master 

for decades. This progression from “can’t do the task” to “better than any human” represents the 

capability spectrum. Everything along this line - from basic competence to superhuman capability 

on a single task - counts as artificial narrow intelligence (ANI).

https://openai.com/charter/
https://www.anthropic.com/company
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Figure 26: This is the continuous outlook of AI measuring performance. All points on this axis can be 

called artificial narrow intelligence (ANI) (except for the origin) (,Morris et al., 2024,).

ARTIFICIAL NARROW INTELLIGENCE (ANI) IBM, 2023

Weak AI—also called Narrow AI or Artificial Narrow Intelligence (ANI)—is AI trained and 

focused to perform specific tasks. Weak AI drives most of the AI that surrounds us today. 

‘Narrow’ might be a more accurate descriptor for this type of AI as it is anything but weak; it 

enables some very robust applications, such as Apple’s Siri, Amazon’s Alexa, IBM Watson, and 

autonomous vehicles.

Capability alone isn’t enough to define and measure progress. AlphaGo achieved superhu­

man capability at Go - better than any human ever. Yet ask it to write a sentence, solve an algebra 

problem, or recognize objects in an image, and you get nothing. This is where foundation models 

changed things. The shift from building one narrow system per task to training general-purpose 

models is why we suddenly need a framework measuring both axes - capability and generality. Pre- 

foundation model AIs maxed out the capability axis on some individual tasks. But systems in the last 

few years are climbing both axes simultaneously - getting better at specific capabilities while also 

expanding to more domains. Capability measures depth; generality measures breadth.

When experts say they see “sparks of AGI” in recent systems, they’re observing performance across 

multiple cognitive domains - not just one ( Bubeck et al., 2023 ). Think of it like the first airplane built 

by the Wright brothers. It barely flew, stayed airborne for seconds, and looked nothing like modern 

airliners. But it was still a plane! Similarly, systems achieving expert-level performance across even a 

modest subset of cognitive domains represent genuine general intelligence - just early-stage (weak 

AGI). As these capabilities expand to cover more domains at higher performance levels, systems 

become both increasingly general and increasingly capable. There’s no universally agreed upon 

threshold where “not AGI” suddenly becomes “AGI.”

Not every possible task matters equally for progress towards general intelligence. We 

don’t care much if AI gets better at knitting sweaters, but we care a lot if it improves at abstract 

reasoning, long-term planning, and memory. The things we care about can be informally thought 

of as everything that can be done as remote work on a computer. More formally, the domains we 

choose to focus on are non-embodied cognitive tasks. These break down into ten core capabilities 

from the Cattell-Horn-Carroll theory ( Hendrycks et al., 2025 ). The specific capabilities we gave 

https://arxiv.org/abs/2311.02462
https://www.ibm.com/topics/artificial-intelligence
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2510.18212


Chapter 1: Capabilities 31

examples of in the first section - LLMs doing reasoning and math, vision models understanding 

images, agents planning in Minecraft - map directly onto these domains ( Hendrycks et al., 2025 ):

Figure 27: Each cognitive capability breaks down into more specific measurable components. 

Reasoning divides into deduction, induction, theory of mind, planning, and adaptation - each can then 

be individually benchmarked and quantified (,Hendrycks et al., 2025,).

Figure 28: Memory similarly splits into associative, meaningful, and verbatim components, allowing 

precise diagnosis of where systems succeed versus fail (,Hendrycks et al., 2025,).

https://arxiv.org/abs/2510.18212
https://arxiv.org/abs/2510.18212
https://arxiv.org/abs/2510.18212
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Generality is the percentage of these domains where a system achieves expert-level 

capability. If a system scores at the 80th percentile or higher on three out of ten domains, that’s 

30% generality.4 Foundation models dramatically increased this compared to traditional narrow AI 

- one model handling writing, math, coding, and visual understanding represents unprecedented 

breadth. But current systems still cover only a fraction of cognitive capabilities, with particularly 

weak performance on long-term planning and memory-related domains ( Hendrycks et al., 2025 ; 

Kwa et al., 2025 ).

Figure 29: The capabilities of GPT-4 and GPT-5, alongside a table that quantifies them (,Hendrycks 

et al., 2025,).

Even though capability and generality exist on a continuum, certain thresholds still matter 

for safety planning. A system performing well on 50% of domains poses different risks than one 

excelling at 90%, we can’t ignore this reality even if generality is a continuous variable. When 

pressed for concrete thresholds - which are often demanded in discussions - here’s our interpretation 

of roughly how terms map onto the (performance, generality) space:

ARTIFICIAL GENERAL INTELLIGENCE (AGI) Hendrycks et al., 2025 Morris et al., 2024

4You can use expert-level parity (roughly 80-90th percentile human performance) as the threshold for “adequate” 
in measuring generality. Different researchers might set this threshold higher or lower depending on their specific 
concerns.

https://arxiv.org/abs/2510.18212
https://arxiv.org/abs/2503.14499
https://arxiv.org/abs/2510.18212
https://arxiv.org/abs/2510.18212
https://arxiv.org/abs/2510.18212
https://arxiv.org/abs/2311.02462
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Matching a well-educated adult’s cognitive versatility and proficiency. Often used interchange

ably with Human level AI (HLAI). Using our definition, these would be systems achieving 

expert-level performance (80-90th percentile) across most cognitive domains (80-90%).

TRANSFORMATIVE AI (TAI) Karnofsky, 2016

AI capable of triggering economic and social transitions comparable to the agricultural or 

industrial revolution. TAI is defined by impact potential rather than cognitive architecture. Using 

our definition, this could mean moderate capability (60th percentile) across many economically 

important tasks (50% of domains), OR exceptional capability (99th percentile) on critical 

domains like automated ML R&D (20% of domains).

ARTIFICIAL SUPERINTELLIGENCE (ASI) Bostrom, 2014

Any intellect that greatly exceeds human cognitive capability across virtually all domains of 

interest. Using our definition, this represents systems achieving superhuman capability (>100%, 

greatly exceeding all humans) across virtually all cognitive domains (95%+ of domains).

https://www.openphilanthropy.org/research/some-background-on-our-views-regarding-advanced-artificial-intelligence/
https://psycnet.apa.org/record/2014-48585-000


Chapter 1: Capabilities 34

Figure 30: The two-dimensional view of capability × generality. Different colored curves represent 

possible development paths to ASI. Every point on these paths corresponds to a different level of AGI 

capability.

This framework provides a concrete foundation for thinking about AI safety. The next 

sections of this chapter, look at why capabilities and generality have been improving rapidly in 

the recent years (Scaling), and what we can say about where they might be headed (Forecasting 

and Takeoff). Thinking about AI progress in this continuous spectrum will help throughout this 

book when we discuss risks and mitigation strategies. Certain capability combinations might enable 

dangerous emergent behaviors even before reaching “human-level” on most tasks. Similarly gover­

nance frameworks, and clear policy communication depend on precise measurement to trigger 

appropriate responses. The rate of improvement along either axis provides important signals about 

which risks are most pressing, and which safety mitigations need to be developed.

It’s worth noting that our working definition does not include the autonomy with which an AGI 

system operates. This is a really important axis to pay attention to, but it has a higher bearing on 

deployment and impact rather than something inherent to a definition for AGI. It will be explored 

in the next chapter dedicated to risks from AI.

Measuring degree of Autonomy (Agency)



Chapter 1: Capabilities 35

OPTIONAL NOTE

Autonomy describes how AI systems interact with humans, not what they can do. A highly capable system 

can be deployed with varying levels of human oversight. Just like we had continuous curves for capability 

and generality, we can similarly have an increasing level of autonomy measured by what % of a task is done 

by the human or the AI (,Morris et al., 2024,):Autonomy level affects risk exposure, not inherent danger. A 

capable system deployed as a tool (Level 1) might be safer than the same system deployed as an agent (Level 

5), even though the underlying capability is identical. Higher capability levels “unlock” higher autonomy 

levels—you can’t have Level 5 autonomy without sufficient capability—but having the capability doesn’t mean 

you should use maximum autonomy.For safety purposes, capability and deployment autonomy should be 

considered separately. A system scoring 90% on 80% of domains might be safely deployed at Level 2 

(consultant) while being dangerous at Level 5 (agent). The framework helps us reason about these tradeoffs 

explicitly.

The (t,n)-AGI Framework: An Alternative way of defining AGI

OPTIONAL NOTE

AGI can also be defined through a combination of time and scale - can AI match ‘n’ experts working 

together for time ‘t’., This is an alternative way to think about defining AGI. Given a time frame ‘t’ to 

complete some cognitive task, if an AI system can outperform a human expert who is also given the time 

frame ‘t’ to perform the same task, then the AI system is called t-AGI for that timeframe ‘t’. If a system can 

outperform ‘n’ human experts working on the task for timeframe ‘t’, then we call it a (t,n)-AGI for the specific 

time duration ‘t’, and number of experts ‘n’. The (t,n)-AGI framework does not account for how many copies 

of the AI run simultaneously.As an example, if an AI that exceeds the capability of a human expert in one 

second on a given cognitive task would be classified as a “one-second AGI”. One-year AGI would beat 

humans at basically everything. Mainly because most projects can be divided into sub-tasks that can be 

completed in shorter timeframes. Within this framework, a superintelligence (ASI) could be something akin 

to a (one year, eight billion)-AGI, that is, an ASI could be seen as an AGI that outperforms all eight billion 

humans coordinating for one year on a given task (,Ngo, 2023,). Researchers at METR operationalized this 

by measuring task completion time horizons for 1 expert (n=1) - finding the duration where AI succeeds 

consistently on professional tasks like software development and ,ML, research (,Kwa et al., 2025,).

https://arxiv.org/abs/2311.02462
https://www.lesswrong.com/posts/BoA3agdkAzL6HQtQP/clarifying-and-predicting-agi
https://arxiv.org/abs/2503.14499
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Figure 31: The image shows a result from METR which measured the task length horizon on 

specific software engineering tasks (,Kwa et al., 2025,).

Task time horizon limitations are implicitly captured in our generality measure as weaknesses in specific 

cognitive tasks like long-term memory storage and retrieval. Systems scoring poorly on memory naturally 

fail on multi-day projects requiring sustained context. Current ,transformer,-based architectures specifically 

struggle with limited context windows.

https://arxiv.org/abs/2503.14499
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5. Leveraging Scale

In the previous section, we looked at different notions of how to define AGI and measure the relevant 

capabilities. Now we’ll examine one of the most important drivers behind improvements in these 

capabilities: scale.

5.1 Bitter Lesson

Human-engineered domain knowledge consistently loses to general methods that leverage 

massive computation. We assume that most of you probably went to university in an era where 

machine learning and AI roughly mean the same thing, or even that deep learning and AI mean 

the same thing. This hasn’t always been true. Early in AI’s history, researchers believed the key 

to artificial intelligence was carefully encoding human knowledge and expertise into computer 

programs. This led to expert systems filled with hand-crafted rules and chess engines programmed 

with sophisticated strategic principles. Time and again, these approaches hit walls while simple 

learning algorithms combined with massive computation kept improving. However, time and time 

again, researchers learned what we now call the bitter lesson.

The biggest lesson that can be read from 70 years of AI research is that general 

methods that leverage computation are ultimately the most effective, and by a large 

margin. […] The bitter lesson is based on the historical observations that 1) AI 

researchers have often tried to build knowledge into their agents, 2) this always 

helps in the short term, and is personally satisfying to the researcher, but 3) in 

the long run it plateaus and even inhibits further progress, and 4) breakthrough 

progress eventually arrives by an opposing approach based on scaling computa

tion by search and learning.

Richard Sutton
Professor University of Alberta, Founder, Openmind Research Institute

2019

Sutton, 2019

The bitterness comes from discovering that decades of human expertise mattered less 

than computation. Researchers who spent years encoding grandmaster chess knowledge watched 

brute-force search defeat world champion Garry Kasparov. Hand-crafted feature detectors in 

computer vision got outperformed by neural networks that learned their own features from data. 

Phonetics-based speech recognition lost to statistical approaches. The pattern repeated: domain 

expertise helped initially, then hit a wall. Simple learning algorithms plus massive compute kept 

improving ( Sutton, 2019 ).

The bitter lesson doesn’t reject human ingenuity or algorithmic innovation. There’s a 

difference between building better general learning systems and encoding task-specific human 

knowledge. This isn’t a difference just between good old fashion AI (GoFAI), and modern deep 

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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learning . Even within deep learning , the bitter lesson still applies—the winning algorithms are 

those that leverage scale most effectively. Transformers didn’t beat LSTMs by encoding linguistic 

knowledge. They outperformed because attention mechanisms parallelize better and can actually 

use massive compute productively. Algorithmic innovation still matters - finding architectures and 

training methods that extract more from the same data and hardware. The algorithms that succeed 

are the ones that unlock scale’s potential.

The bitter lesson shapes expectations about AI progress. If the bitter lesson continues to be 

true, improvements should come from either finding algorithms that better leverage scale, or simply 

scaling existing algorithms with more compute, data, and parameters. In the last few years, the 

majority of gains seen in AI capabilities have emerged from scaling up the same transformer based 

language models.

5.2 Scaling Laws

Training frontier AI models costs hundreds of millions of dollars, making it critical to 

predict returns on investment. AI labs face resource allocation decisions with massive stakes: 

should they spend more on GPUs or training data ? Train a larger model briefly or a smaller model 

longer? With a fixed compute budget, they might choose between a 20-billion parameter model 

trained on 40% of their data or a 200-billion parameter model trained on 4% of it. Getting this 

wrong wastes hundreds of millions. Scaling laws help turn these gambles into engineering decisions 

by establishing empirically observed relationships between inputs and model accuracy.

Scaling laws describe how model accuracy changes as you vary four key variables:

Figure 32: Example of capabilities increasing with an increase with one of variables in the scaling 

laws - parameter count. The same model architecture (Parti) was used to generate an image using 

an identical prompt, with the only difference between the models being the parameter size. There are 

noticeable leaps in quality, and somewhere between 3 billion and 20 billion parameters, the model 

acquires the ability to spell words correctly (,Yu et al., 2022,).

Scaling laws are empirically observed relationships, not laws of nature. OpenAI first docu­

mented these relationships in 2020 by running hundreds of experiments, varying inputs while 

measuring accuracy ( Kaplan et al., 2020 ). They found that when you increase compute by 

10×, accuracy improves predictably. Double the parameters, accuracy jumps predictably. These 

patterns proved surprisingly consistent across model architectures and tasks, suggesting they 

https://arxiv.org/abs/2206.10789
https://arxiv.org/abs/2001.08361
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capture something fundamental about how neural networks learn. Later research revealed optimal 

training requires roughly 20 tokens of data per parameter - about 10× more data than early laws 

suggested5 ( Hoffmann et al., 2022 ). This meant previous large models were undertrained relative 

to their size. The relationships continue evolving as researchers gather more evidence, but the 

core insight remains: scale drives predictable capability gains. The following graphs clearly show 

massive increases in scale for data, compute, and parameter count by all major AI labs.

Figure 33: Exponential growth of parameters in notable AI systems. Parameters are variables in an AI 

system whose values are adjusted during training to establish how input data gets transformed into the 

desired output; for example, the connection weights in an ,artificial neural network, (,Giattino et al., 

2023,). (interactive version on website)

5This is also commonly called ‘chinchilla optimality’ or the chinchilla optimal frontier based on the original model 
that these laws were tested on.

https://arxiv.org/abs/2203.15556
https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/artificial-intelligence
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Figure 34: Exponential growth of datapoints used to train notable AI systems. Each domain has a 

specific data point unit; for example, for vision it is images, for language it is words, and forgames it 

is timesteps. This means systems can only be compared directly within the same domain (,Giattino et 

al., 2023,). (interactive version on website)

Figure 35: Exponential growth of computation in the training of notable AI systems. Computation 

is measured in total peta FLOP, which is 10e15 floating-point operations (,Giattino et al., 2023,). 

(interactive version on website)

The Broken Neural Scaling Laws (BNSL) update in 2023

OPTIONAL NOTE

https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/artificial-intelligence
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Research showed that performance doesn’t always improve smoothly - there can be sharp transitions, tempo­

rary plateaus, or even periods where performance gets worse before getting better. Examples of this include 

things like “Grokking”, where models suddenly achieve strong generalization after many training steps, or 

deep double descent, where increasing model size initially hurts then helps performance. Rather than simple 

power laws, BNSL uses a more flexible functional form that can capture these complex behaviors. This allows 

for more accurate predictions of scaling behavior, particularly around discontinuities and transitions. Scaling 

laws are a good baseline, but discontinuous jumps in capabilities and abrupt step changes are still possible 

(,Caballero et al., 2023,).

Figure 36: A Broken Neural Scaling Law example (dark black solid line) (with 3 breaks where 

purple dotted lines intersect with dark black solid line) contains 4 individual power law segments 

(where the dashed lines that are yellow, blue, red, and green overlap with the dark black solid 

line). The 1st and 2nd break are very smooth; the 3rd break is very sharp (,Caballero et al., 

2023,).

5.3 Scaling Hypothesis

Scaling might continue driving capability gains. Look back at the examples from previous 

sections - the programming abilities, emergent reasoning, scientific research assistance, the jump 

from GPT-3.5 to GPT-4 across professional exams. These capabilities appeared as models got 

bigger and trained on more data, without requiring new architectural breakthroughs or encoded 

domain knowledge. If current approaches scaled up could produce systems capable of automating 

AI research within years, safety work becomes far more urgent. The existing evidence supports 

multiple interpretations because we’re watching a technology develop in real-time whose limits we 

don’t fully understand. So different people hold different hypotheses about how the future could 

unfold.

The strong scaling hypothesis. This proposes that simply scaling up existing architectures with 

more compute and data will be sufficient to reach transformative AI capabilities ( Gwern, 2020 ). 

https://arxiv.org/abs/2210.14891
https://arxiv.org/abs/2210.14891
https://arxiv.org/abs/2210.14891
https://gwern.net/scaling-hypothesis
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According to this view, we already have all the fundamental components needed - it’s just a matter 

of making them bigger, following established scaling laws.

Figure 37: Augmentation/Scaffolding stays constant, but if the scaling hypothesis, weak or strong, is 

true, then capabilities will keep improving just by scaling.

The weak scaling hypothesis. This view states that even though scale will continue to be the 

primary driver of progress, we will also need targeted architectural and algorithmic improvements to 

overcome specific bottlenecks. These improvements wouldn’t require fundamental breakthroughs, 

but rather incremental enhancements to better leverage scale ( Gwern, 2020 ).

Researchers have been developing algorithms that leverage scale and compute for more 

than a decade. We have seen many gains come from improvement in compute efficiency 

from innovations like better attention mechanisms, mixture-of-experts routing, and efficient training 

methods. But even when researchers have developed sophisticated algorithms following the bitter 

lesson’s principles, data suggests that between 60-95% of performance gains came from scaling 

compute and data. While algorithmic improvements contributed 5-40%, though there is substantial 

methodological uncertainty in disentangling these contributions ( Ho et al., 2024 ).

The emergence of unexpected capabilities might provide another argument for strong 

scaling. We’ve seen previous generations of foundation models demonstrate remarkable abilities 

that weren’t explicitly trained for, like programming. This emergent behavior hints that it is not 

impossible for higher-order cognitive abilities to similarly emerge simply as a function of further 

scale.

https://gwern.net/scaling-hypothesis
https://epoch.ai/blog/algorithmic-progress-in-language-models
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Figure 38: Even if we see no improvements in model scale, other elicitation techniques and scaffolding 

can keep improving. So overall capabilities keep growing. Realistically, the future is probably going to 

see both improvement due to scaffolding and scale. So for now, there does not seem to be an upper 

limit on improving capabilities as long as either one of the two holds.

Scale combined with techniques and tools hypothesis. Essentially, both the scaling laws (which 

only predict foundation model capabilities) and most debates around “scale is all you need” often 

miss other aspects of AI development that happen outside the scope of what scaling laws can 

predict. They don’t account for improvements in AI “scaffolding” (like chain-of-thought prompting, 

tool use, or retrieval), or combinations of multiple models working together in novel ways. Any LLM 

with internet access, code execution, and the ability to call upon the help of other specialized sub-

models has substantially more capability than the same LLM alone. We gave several examples of this 

being the dominant trend in our first section - tool use, thinking for longer (inference time scaling), 

MCP servers and so on.

Debates around the scaling laws only tell us about the capabilities of a single foundation 

model trained in a standard way. For example, by the strong scaling hypothesis we can reach TAI 

by simply scaling up the same foundation model until it completely automates ML RnD. But even 

if scaling stops, halting capabilities progress on the core foundation model (in either a weak or a 

strong way), the external techniques that leverage the existing model can still continue advancing. 

Many researchers think that this is a core element where future capabilities will come from. It is 

also referred to as “unhobbling” ( Aschenbrenner, 2024 ), “schlep” ( Cotra, 2023 ) and various 

other terms, but all of them point to the same underlying principle - raw scaling of single model 

performance is only one part of overall AI capability advancement.

https://situational-awareness.ai/from-gpt-4-to-agi/#Unhobbling
https://www.planned-obsolescence.org/scale-schlep-and-systems/
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Figure 39: An example of how much the performance on a benchmark can change just by using 

post training techniques like doing reasoning specific training and allowing the model to think for 

longer. The ,base model, scores   4.5% on the humanities last exam benchmark (HLE), whereas with 

each subsequent “unhobbling” step we see jumps in performance leading up to a 25% score on the 

benchmark (,Somala et al., 2024,).

Even the tool based scaling hypothesis is debated. Some argue that tools or scale poured into 

LLMs is unlikely to lead to AGI as they define it. They focus on completely different architectures 

from transformer based LLMs, focusing instead on things like neuro-symbolic approaches ( Goertzel 

et. al., 2023 ).

Despite disagreements about which hypothesis is correct, major AI labs are betting heavily 

on scaling. Sam Altman from OpenAI has stated his belief that scaling is going to be a big compo­

nent leading to capability gains ( Altman, 2023 ), Anthropic CEO Dario Amodei has expressed 

similar views ( Amodei, 2023 ) and DeepMind’s safety team similarly wrote that “not many more 

fundamental innovations are needed for AGI” ( DeepMind, 2022 ). This consensus suggests that 

regardless of whether strong, weak, or tools-based scaling dominates, scale itself will likely remain 

central to near-term progress.

https://epoch.ai/gradient-updates/three-issues-undermining-compute-based-ai-policies
https://arxiv.org/abs/2310.18318
https://arxiv.org/abs/2310.18318
https://openai.com/blog/planning-for-agi-and-beyond
https://www.dwarkeshpatel.com/p/dario-amodei
https://www.lesswrong.com/posts/GctJD5oCDRxCspEaZ/clarifying-ai-x-risk
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6. Forecasting Timelines

Predicting when AI automates cognitive labor determines which safety strategies are 

viable. The difference between 10 years and 50 years fundamentally changes which safety strate­

gies are viable and which risks demand immediate attention . If TAI is able to automate cognitive 

labor (and thereby automate ML RnD) by 2030, we need safety solutions working soon. There’s no 

time for slow theoretical research—we need approaches that work with current systems and scale 

quickly. If it arrives around 2050, we have breathing room for fundamental alignment research, for 

building robust governance frameworks, and for developing evaluation methods we can trust.

This section presents empirical trends and forecasts of AI progress using data-driven 

analysis. Our goal is to build on the scaling laws discussion and present the strongest available 

evidence so you can form informed views on where AI might be headed. We focus primarily on 

compute-based trends, with heavier quantitative forecasts presented alongside graphs. An appendix 

covers judgment-based surveys and expert opinions. Remember the old saying: “All models are 

wrong, but some are useful.”

Forecasting helps us form internally consistent beliefs about different possible futures. The 

way that you should think about forecasting methods is not as concrete predictions of timelines; but 

instead as scenarios that help you reason about different potential futures. They let you check if your 

beliefs are internally coherent. If you think investment grows 5x per year AND software efficiency 

improves 3x per year AND hardware scales 15% per year AND each order of magnitude automates 

at least 10% of tasks, then what does that imply? Is the outcome of this combination consistent with 

the future you expect? If you’re surprised, maybe one of your input beliefs needs updating.

Current evidence suggests scaling can continue through at least 2030. Training compute 

has grown 5x per year since 2020, dataset sizes have grown by 3.7x/year, and training costs by 

3.5x/year. As a concrete example, this means that in mid 2025 the cost of training a single AI 

model (Grok-4) including hardware and electricity, is estimated at $480 million USD ( Epoch AI, 

2025 ). By 2030, this trajectory points to a single training run requiring hundreds of billions of 

dollars and gigawatts of power - which is comparable to running a small city ( Owen, 2025 ). These 

are unprecedented scales, but analysis suggests that they aren’t impossible ( Epoch AI, 2025 ; 

Sevilla et. al., 2024 ; Owen, 2025 ). The question is whether the economic incentives justify it and 

whether the infrastructure constraints (chips, power, data, … ) can be overcome in time.

AI systems that leverage more compute during training and inference are capable of 

automating progressively more tasks. Initially, only a small fraction of tasks are automated, so 

running AI systems creates relatively little economic value.6 Once effective compute budgets grow 

large enough, the range of automated tasks expands until eventually all cognitive labor becomes 

automated. This feedback loop—compute enabling automation, which increases productivity, which 

funds more compute—continues until full labor automation.

6You can think of a task as a specific unit of work or activity that a worker performs as part of their job (for 
instance tasks for a factory worker may include operating machinery, inspecting products, and coordinating with 
team members). Some tasks are assumed to be harder to automate than others, as they require more training and 
runtime compute to be effectively automated.

https://epoch.ai/trends
https://epoch.ai/trends
https://epoch.ai/blog/what-will-ai-look-like-in-2030
https://epoch.ai/epoch-after-hours/ai-in-2030
https://epoch.ai/blog/can-ai-scaling-continue-through-2030
https://epoch.ai/blog/what-will-ai-look-like-in-2030
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Figure 40: The feedback loop of compute leading to more automation, which increases productivity, 

which increases both the amount of produced compute as well as compute efficiency completing the 

loop until all labor is automated (,Epoch AI, 2025,).

The path to full labor automation runs through three resources: compute, data, and the 

economic returns that fund both. In the subsections below, we examine each constraint. For 

compute, we look at effective FLOP growth—the combination of more chips, better algorithms, and 

more efficient hardware. For data, we track when we exhaust the internet’s text and what happens 

after. Each section answers: does this constraint stop scaling before 2030? The appendix provides 

detailed breakdowns of the other relevant factors like investment trends, semiconductor production, 

and power infrastructure for readers who want the full picture.

All forecasts come with wide error margins that compound over time. Even if we assume 

compute-based scaling laws hold, we still don’t know how much compute TAI will actually require. 

One framework for estimating the compute required for general intelligence uses “biological 

anchors,” treating the human brain as a proof of concept. These estimates vary dramatically 

depending on the biological process used as a reference: a lower bound considers the compute 

performed in learning skills during a human lifetime (   10{28} FLOP), while a theoretical upper 

bound accounts for the total compute performed in shaping humans over evolutionary history (  

10{41} FLOP) - twelve orders of magnitude of uncertainty ( Carlsmith, 2020 ; Cotra, 2020 ; Ho, 

2022 ). It’s like not knowing if something costs one dollar or a trillion dollars. When someone says 

“ AGI in 2045 ,” they mean “ somewhere in the 2030s-2050s range, with 2045 as a rough center 

“ - not a precise date. The same principle applies to all trends and forecasts presented through this 

section; for example, projections of available chips range by a factor of 20×, and some compute 

estimates span 50× ( Sevilla et al., 2024 ).

https://epoch.ai/data/ai-models
https://coefficientgiving.org/research/how-much-computational-power-does-it-take-to-match-the-human-brain/
https://www.alignmentforum.org/posts/KrJfoZzpSDpnrv9va/draft-report-on-ai-timelines
https://epoch.ai/blog/grokking-bioanchors
https://epoch.ai/blog/grokking-bioanchors
https://epoch.ai/blog/can-ai-scaling-continue-through-2030
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6.1 Effective Compute

Effective compute combines three independent factors that each multiply your AI capa

bilities. Scaling laws track performance against compute, but “compute” means more than just 

counting GPUs. When researchers say GPT-4 used more compute than GPT-3, they’re not just talking 

about running more hardware for longer. They’re talking about the growth in ‘effective’ compute 

measured in ‘effective’ floating-point operations (eFLOPs). As an analogy, think of it like measuring 

how far a fleet of cars can travel. You need three things: how many cars you have (chip production), 

how fast each car goes (hardware efficiency), and how efficiently you’re driving (software efficiency) 

( Erdil et al., 2025 ). The relationship looks like this:

Effective compute = Software efficiency × Hardware efficiency × Number of chips

As an illustrative example, think about wanting to train a model that gets 90% accuracy on some 

benchmark. In 2020, that might have required 1 billion FLOP using the algorithms available then. 

But by 2025, better training methods, hardware utilization and other algorithmic improvements 

mean you only need 100 million FLOP to hit that same 90% accuracy. Your software got 10× more 

efficient. Better algorithms multiply your effective compute without building a single new chip. 

Meanwhile, the physical efficiency of your chips got better too. A 2025 GPU does more FLOP per 

dollar than a 2020 GPU - that’s hardware efficiency. And you’re also just making more chips overall 

as more investment keeps flowing in. So the total “effective” FLOPs changes as a function of all 

three of these variables.

Each factor can improve independently, which is why effective compute grows faster than 

any single input. You can build more chips without improving their speed. You can develop better 

software to make use of existing hardware. You can design faster processors without changing either 

your software or building more chips. When all three improve simultaneously—as they have been—

the total compute available (effective compute) compounds much faster than hardware trends alone 

would suggest. Here’s are the trends for each in 2025 ( Epoch AI, 2025 ), with more details in the 

appendix:

Figure 41: Growth in effective compute breaks down into three parts: growth in computing hardware, 

improvements in hardware efficiency, and software efficiency gains.

https://arxiv.org/abs/2503.04941
https://epoch.ai/trends
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Figure 42: The GATE model by EpochAI translates a given stock of effective compute into a degree of AI 

automation. This occurs by expanding the fraction of tasks that can be automated and by increasing the 

effective runtime compute on tasks that are already automated. Widespread automation often happens 

within two decades from the start of the simulation. Note that GATE uses the abstract notion of a “fraction 

of economically useful tasks” as a simplification, and does not specify the tasks and the order in which 

they are automated. (,Epoch AI, 2025,).

Figure 43: The fraction of Gross World Product (GWP) paid out to human workers rapidly decreases 

as AI becomes the primary source of labor (,Epoch AI, 2025,). We talk about wages falling below 

subsistence levels as a concrete risk in the next chapter.

6.2 Training Data

Besides just effective compute, the second overarching factor that we have to take into consideration 

is the amount of available data to train on.

The training dataset size for language models has grown by 3.7x per year since 2010. 

The internet has maybe 30 years worth of text data at current consumption rates—but we’ll hit that 

wall around 2028. The indexed web contains roughly 500 trillion tokens of text (after removing 

duplicates). The largest models in 2024 train on about 15 trillion tokens. If we keep scaling at 

https://epoch.ai/gate#ai-automation
https://epoch.ai/gate#ai-automation
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4× per year, projections say that we will exhaust high-quality public text data between 2026 and 

2032 ( Epoch AI, 2023 ; Villalobos et al., 2024 ). Three escape routes exist, whether data actually 

constrains scaling through 2030 depends on how well these alternatives work.:

Figure 44: Projections of future dataset sizes according to three different scaling policies. Depending 

on the degree of overtraining, the stock is fully used between 2025 and 2030 (,Villalobos et al., 2024,).

https://epoch.ai/trends
https://arxiv.org/abs/2211.04325
https://epoch.ai/blog/will-we-run-out-of-data-limits-of-llm-scaling-based-on-human-generated-data
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7. Takeoff

This final section synthesizes a lot of the discussion that has happened through this chapter. We 

started from where we are currently, and went all the way to forecasting specific trends in the inputs 

to AI capabilities. So this section lays out different sides of the debate on what the combination of 

all of this implies.

Takeoff speed refers to how quickly AI systems become dramatically more powerful than 

they are today and cause major societal changes. This is related to, but distinct from, AI 

timelines (how long until we develop advanced AI). While timelines tell us when transformative AI 

might arrive, takeoff speeds tell us what happens after it arrives - does AI capability and impact 

increase gradually over years, or explosively over days or weeks?

How can we think about different takeoff speeds? When analyzing different takeoff scenarios, 

we can look at several key factors:

In the next section we discuss just one of these factors that tends to be the most discussed aspect - 

takeoff speed. The rest are explained in the appendix.

7.1 Speed

What is a slow takeoff? In a slow takeoff scenario, AI capabilities improve gradually over 

months or years. We can see this pattern in recent history - the transition from GPT-3 to GPT-4 

brought significant improvements in reasoning, coding, and general knowledge, but these advances 

happened over several years through incremental progress. Paul Christiano describes slow takeoff 

as similar to the Industrial Revolution but “10x-100x faster” ( Davidson, 2023 ). Terms like “slow 

takeoff” and “soft takeoff” are often used interchangeably.

In mathematical terms, slow takeoff scenarios typically show linear or exponential growth patterns. 

With linear growth, capabilities increase by the same absolute amount each year - imagine an AI 

system that gains a fixed number of new skills annually. More commonly, we might see exponential 

growth, where capabilities increase by a constant percentage, similar to how we discussed scaling 

laws in earlier sections. Just as model performance improves predictably with compute and data, 

slow takeoff suggests capabilities would grow at a steady but manageable rate. This might manifest 

as GDP growing at 10-30% annually before accelerating further.

The key advantage of slow takeoff is that it provides time to adapt and respond. If we discover 

problems with our current safety approaches, we can adjust them before AI becomes significantly 

more powerful. This connects directly to what we’ll discuss in later chapters about governance 

and oversight - slow takeoff allows for iterative refinement of safety measures and gives time for 

coordination between different actors and institutions.

https://www.alignmentforum.org/posts/Nsmabb9fhpLuLdtLE/takeoff-speeds-presentation-at-anthropic


Chapter 1: Capabilities 51

Figure 45: An illustration of slow continuous takeoff (,Martin & Eth, 2021,).

Fast takeoff describes scenarios where AI capabilities increase dramatically over very 

short periods - perhaps days or even hours. Instead of the gradual improvement we saw from 

GPT-3 to GPT-4, imagine an AI system making that much progress every day. This could happen 

through recursive self-improvement, where an AI system becomes better at improving itself, creating 

an accelerating feedback loop.

Mathematically, fast takeoff involves superexponential or hyperbolic growth, where the 

growth rate itself increases over time. Rather than capabilities doubling every year as in expo­

nential growth, they might double every month, then every week, then every day. This relates to what 

we discussed in the scaling section about potential feedback loops in AI development - if AI systems 

can improve the efficiency of AI research itself, we might see this kind of accelerating progress.

The dramatic speed of fast takeoff creates unique challenges for safety. As we’ll explore in 

the chapter on strategies, many current safety approaches rely on testing systems, finding problems, 

and making improvements. But in a fast takeoff scenario, we might only get one chance to get things 

right. If an AI system starts rapidly self-improving, we need safety measures that work robustly from 

the start, because we won’t have time to fix problems once they emerge.

Terms like “fast takeoff”, “hard takeoff” and “FOOM” are often used interchangeably.

https://www.alignmentforum.org/posts/pGXR2ynhe5bBCCNqn/takeoff-speeds-and-discontinuities
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Figure 46: An illustration of fast continuous takeoff, which is usually taken to mean superexponential 

or hyperbolic growth. The growth rate itself increases (,Martin & Eth, 2021,).

The speed of AI takeoff fundamentally shapes the challenge of making AI safe. This connects 

directly to what we discussed about scaling laws and trends - if progress follows predictable patterns 

as our current understanding suggests, we might have more warning and time to prepare. But if 

new mechanisms like recursive self-improvement create faster feedback loops, we need different 

strategies. A simple example helps illustrate this: Today, when we discover that language models 

can be jailbroken in certain ways, we can patch these vulnerabilities in the next iteration. In a slow 

takeoff, this pattern could continue - we’d have time to discover and fix safety issues as they arise. But 

in a fast takeoff, we might need to solve all potential jailbreaking vulnerabilities before deployment, 

because a system could become too powerful to safely modify before we can implement fixes.

https://www.alignmentforum.org/posts/pGXR2ynhe5bBCCNqn/takeoff-speeds-and-discontinuities
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Figure 47: Comparison of slow vs fast takeoff. Showcasing that while described as linguistically slower 

than fast, it is by no means slow (,Christiano, 2018,).

Understanding fast vs slow helps you get the overview of the takeoff debate, but there can be a 

bunch of other factors like - are there sudden jumps? (takeoff continuity), how many systems are 

‘taking off’ at the same tim? (takeoff polarity), how architecturally similar are these systems? (takeoff 

similarity) . If you want to learn more feel free to read the details on these in the optional appendix.

7.2 Takeoff Arguments

The Overhang Argument . There might be situations where there are substantial advancements or 

availability in one aspect of the AI system, such as hardware or data, but the corresponding software 

or algorithms to fully utilize these resources haven’t been developed yet. The term ‘overhang’ is 

used because these situations imply a kind of ‘stored’ or ‘latent’ potential. Once the software or 

algorithms catch up to the hardware or data, there could be a sudden unleashing of this potential, 

leading to a rapid leap in AI capabilities. Overhangs provide one possible argument for why we 

might favor discontinuous or fast takeoffs. There are two types of overhangs commonly discussed:

Overhangs are also used as a counter argument to why AI pauses do not meaningfully 

affect takeoff speeds. One counter argument to the overhang argument is that it relies on the 

assumption that during the time that we are pausing AI development, the rate of production of chips 

will remain constant. It could be argued that the companies manufacturing these chips will not make 

as many chips if data centers aren’t buying them. However, this argument only works if the pause 

is for any appreciable length of time, otherwise the data centers might just stockpile the chips. It is 

also possible to make progress on improved chip design, without having to manufacture as many 

https://sideways-view.com/2018/02/24/takeoff-speeds/
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during the pause period. However, during the same pause period we could also make progress on 

AI safety techniques ( Elmore, 2024 ).

The Economic Growth Argument . Historical patterns of economic growth, driven by human 

population increases, suggest a potential for slow and continuous AI takeoff. This argument says 

that as AIs augment the effective economic population, we might witness a gradual increase in 

economic growth, mirroring past expansions but at a potentially accelerated rate due to AI-enabled 

automation. Limitations in AI’s ability to automate certain tasks, alongside societal and regulatory 

constraints (e.g. that medical or legal services can only be rendered by humans), could lead to a 

slower expansion of AI capabilities. Alternatively, growth might far exceed historical rates. Using a 

similar argument for a fast takeoff hinges on AI’s potential to quickly automate human labor on a 

massive scale, leading to unprecedented economic acceleration.

Figure 48: A visualization of the ranking of arguments for explosive economic growth, both in favor 

and against. By ,Epoch, AI (,Erdil & Besiroglu, 2024,).

Compute Centric Takeoff Argument . This argument, similar to the Bio Anchors report, assumes 

that compute will be sufficient for transformative AI. Based on this assumption, Tom Davidson’s 

2023 report on compute-centric AI takeoff discusses feedback loops that may contribute to takeoff 

dynamics.

Depending on the strength and interplay of these feedback loops, they can create a self-fulfilling 

prophecy leading to either an accelerating fast takeoff if regulations don’t curtail various aspects 

https://www.youtube.com/watch?v=Q3eRy4t2oPQ
https://arxiv.org/abs/2309.11690
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of such loops, or a slow takeoff if the loops are weaker or counterbalanced by other factors. The 

entire model is shown in the diagram below:

Figure 49: A summary of What a Compute-Centric Framework Says About Takeoff Speeds (,Davidson, 

2024,)

Automating Research Argument. Researchers could potentially design the next generation of 

ML models more quickly by delegating some work to existing models, creating a feedback loop of 

ever-accelerating progress. The following argument is put forth by Ajeya Cotra:

Currently, human researchers collectively are responsible for almost all of the progress in AI 

research, but are starting to delegate a small fraction of the work to large language models. This 

makes it somewhat easier to design and train the next generation of models.

https://www.openphilanthropy.org/research/what-a-compute-centric-framework-says-about-takeoff-speeds/
https://www.openphilanthropy.org/research/what-a-compute-centric-framework-says-about-takeoff-speeds/
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Figure 50: A. This figure shows a representation of a self-reinforcing loop (in red). It demonstrates how 

internally deployed AI systems are used to help automate AI R&D, initially alongside human researchers. 

These AI R&D efforts culminate in a more capable AI system, which can be deployed as a new, improved, 

automated researcher. This cycle keeps repeating, resulting in a self-reinforcing loop (,Stix et al., 2025,)

The next generation is able to handle harder tasks and more different types of tasks, so human 

researchers delegate more of their work to them. This makes it significantly easier to train the 

generation after that. Using models gives a much bigger boost than it did the last time around.

Each round of this process makes the whole field move faster and faster. In each round, human 

researchers delegate everything they can productively delegate to the current generation of models 

— and the more powerful those models are, the more they contribute to research and thus the faster 

AI capabilities can improve ( Cotra, 2023 ).

So before we see a recursive explosion of intelligence, we see a steadily increasing amount of the 

full RnD process being delegated to AIs. At some point, instead of a significant majority of the 

research and design being done by AI assistants at superhuman speeds, it will become that - all of 

the research and design for AIs is done by AI assistants at superhuman speeds.

At this point there is a possibility that this might eventually lead to a full automated recursive 

intelligence explosion.

The Intelligence Explosion Argument . This concept of the ‘intelligence explosion’ is also central 

to the conversation around discontinuous takeoff. It originates from I.J. Good’s thesis, which posits 

that sufficiently advanced machine intelligence could build a smarter version of itself. This smarter 

version could in turn build an even smarter version of itself, and so on, creating a cycle that could 

lead to intelligence vastly exceeding human capability ( Yudkowsky, 2013 ).

In their 2012 report on the evidence for Intelligence Explosions, Muehlhauser and Salamon delve 

into the numerous advantages that machine intelligence holds over human intelligence, which 

facilitate rapid intelligence augmentation ( Muehlhauser, 2012 ). These include:

https://arxiv.org/abs/2504.12170
https://www.planned-obsolescence.org/ais-accelerating-ai-research/
https://intelligence.org/files/IEM.pdf
https://intelligence.org/files/IE-EI.pdf
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8. Appendix: Forecasting

8.1 Effective Compute

8.1.1 Hardware Efficiency

The first factor in increasing effective compute is - how efficient is the hardware that we produce at 

doing computation?

AI chips are getting about 35% more powerful each year, but we’re approaching physical 

limits. Since around 2010, the raw computational performance (FLOP/s) of GPUs in FP32 precision 

has grown by roughly 1.35× per year ( Epoch AI, 2023 ; Hobbahn et al., 2023 ). The improvement 

comes from things like denser transistors, specialized AI circuitry, and switching to lower-precision 

number formats. Performance per dollar has improved rapidly, and hardware at any given precision 

and fixed performance level becomes 30% cheaper each year. At the same time, manufacturers 

continue to introduce more powerful and expensive hardware ( Epoch AI, 2025 )

In the near future this trend seems likely to continue, but thermodynamic limits will 

eventually stop this trend. Chips can only get so energy-efficient before physics says “no”. Every 

computation generates heat as a fundamental law of physics, not an engineering problem. Current 

analysis suggests there is room for a 50 to 1,000× improvement in energy efficiency before we 

hit fundamental CMOS limits, with a 50% chance that improvements cease before a roughly 200× 

improvement on existing technology. These estimates suggest that CMOS processors are likely 

sufficiently efficient to power substantially larger AI training runs than today.7 This implies we have 

significant headroom to scale using current silicon paradigms through 2030 and beyond, although 

hardware R&D returns may eventually diminish as we approach physical limits. Beyond these limits, 

training runs would likely require radical changes to computing paradigms, like a shift to adiabatic 

computing ( Ho et al., 2023 ; Sevilla et al., 2024 ).

7CMOS (Complementary Metal-Oxide-Semiconductor) is the primary paradigm in processor production. The 
majority of all digital integrated circuits (CPUs, GPUs, RAM, mobile SoCs) produced today are CMOS.

https://epoch.ai/trends
https://epoch.ai/blog/trends-in-machine-learning-hardware
https://epoch.ai/data/machine-learning-hardware
https://epoch.ai/blog/limits-to-the-energy-efficiency-of-cmos-microprocessors
https://epoch.ai/blog/can-ai-scaling-continue-through-2030
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Figure 51: Currently observed trends in the efficiency of hardware used for ,ML, over the last decades. 

We can see a clear year by year increase in peak computational performance (,Hobbahn et al., 2023,).

Figure 52: A forecast of the future using the Growth and AI Transition Endogenous (GATE) playground. 

This graph shows investments in hardware R&D improving the efficiency of AI chips (measured in units of 

FLOP/year per $). Eventually, hardware efficiency is capped by physical limits. The red line showcases 

aggressive parameter settings, green is conservative parameter settings. The red zone highlights the 

difference in timelines to full automation between aggressive and conservative models (,Epoch AI, 

2025,).

8.1.2 Software and Algorithmic Efficiency

The second factor in increasing effective compute is - how well we can utilize all the existing 

hardware that we have. This is separate from just making the physical hardware itself more efficient.

https://epoch.ai/blog/trends-in-machine-learning-hardware
https://epoch.ai/gate
https://epoch.ai/gate
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Better algorithms have cut the compute needed for a given result by  3× per year. The level 

of compute needed to achieve a given level of performance has halved roughly every 8 months8 . 

This rapid improvement means that the compute required to achieve specific levels of capability 

on benchmarks can drop by orders of magnitude over just a few years of algorithmic progress. 

The improvements to compute efficiency explain roughly 35% of performance improvements in 

language modeling since 2014, with the other 65% coming from just building more chips and 

running them longer. Overall, this means we’re getting smarter about using available hardware, and 

not just throwing more compute at problems ( Epoch AI, 2023 ; Ho et al., 2024 ).

Figure 53: Estimates of the contributions of scaling and algorithmic innovation in terms of the raw 

compute that would be naively needed to achieve a state-of-the-art level of performance. The contribution 

of algorithmic progress is roughly half as much as that of compute scaling (,Ho et al., 2024,)

895% confidence interval of 5 to 14 months

https://epoch.ai/trends
https://epoch.ai/blog/algorithmic-progress-in-language-models
https://epoch.ai/blog/algorithmic-progress-in-language-models
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Figure 54: A forecast of the future using the Growth and AI Transition Endogenous (GATE) playground. 

This graph shows algorithmic improvements over time. By developing better algorithms and using higher-

quality data, it becomes possible to do more with the same hardware (measured in units of “effective 

FLOP per FLOP”). The red line showcases aggressive parameter settings, green is conservative para

meter settings. The red zone highlights the difference in timelines to full automation between aggressive 

and conservative models (,Epoch AI, 2025,).

8.1.3 Semiconductor Production

The third factor in increasing effective compute is - how many chips can you actually build?

Total available computing power from NVIDIA chips has grown by approximately 2.3x per 

year since 2019, enabling the training of ever-larger models. NVIDIA designs a dominant 

share of AI training chips, and Taiwan’s TSMC serves as the primary chip fab for these manufac­

turers. The AI chip supply chain is highly concentrated. In 2024 TSMC dedicated roughly 5% of 

their advanced chip production to AI accelerators—the rest goes to phones, computers, and other 

electronics ( Sevilla et al., 2024 ). If AI labs want dramatically more chips, TSMC would need to 

shift priorities, expand capacity, and compete with other customers who also want cutting-edge 

semiconductors ( Epoch AI, 2025 ).

https://epoch.ai/gate
https://epoch.ai/blog/can-ai-scaling-continue-through-2030
https://epoch.ai/data-insights/nvidia-chip-production
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Figure 55: An estimate the world’s installed NVIDIA GPU compute capacity, broken down by GPU 

model (,Epoch AI, 2025,).

Figure 56: Table showcasing estimates costs and times to overcome various constraints in scaling up 

compute production (,Edelman & Ho, 2025,).

https://epoch.ai/data-insights/nvidia-chip-production
https://epoch.ai/gradient-updates/compute-scaling-will-slow-down-due-to-increasing-lead-times
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Figure 57: Quarterly revenue of NVIDIA Corporation across its main market segments, reported in US 

dollars. NVIDIA manufactures graphics processing units (GPUs), which were originally used for gaming 

and are now used to train AI models. This data is not adjusted for inflation (,Our World in Data, 2023,). 

(interactive version on website)

Investment doesn’t immediately make chip production go faster. If some country wants to 

build their own TSMC equivalent, then it can take 4-5 years to build a new cutting-edge fab 

(accounting for construction and permitting), though upgrading an existing fab takes less time, 

around 2 years in addition to billions in investment ( Edelman & Ho, 2025 ; Epoch AI, 2025 ). 

Besides the existing competition for chips from TSMC, another factor is that the machines TSMC 

needs to manufacture the chips. These are almost exclusively made by a single company: ASML 

in the Netherlands ( Blablová, 2025 ). These extreme ultraviolet (EUV) lithography machines cost 

between $150 million to $380 million each. If/When someone (e.g. TSMC) wants to expand 

production, they can’t just order fifty more next month. They join an already long waitlist ( Edelman 

& Ho, 2025 ; Sevilla, AXRP Podcast, 2024 ).

Figure 58: A forecast using the Growth and AI Transition Endogenous (GATE) playground. This graph 

shows potential scale up of AI chip fabrication to meet demand for AI workloads. Due to the exponential 

cost of rapid expansions, growth is reduced by an “adjustment costs” parameter. The red line showcases 

aggressive parameter settings, green is conservative parameter settings. The red zone highlights the 

difference in timelines to full automation between aggressive and conservative models (,Epoch AI, 

2025,).

https://ourworldindata.org/artificial-intelligence
https://epoch.ai/gradient-updates/compute-scaling-will-slow-down-due-to-increasing-lead-times
https://arxiv.org/abs/2503.04941
https://epoch.ai/gradient-updates/why-china-isnt-about-to-leap-ahead-of-the-west-on-compute
https://epoch.ai/gradient-updates/compute-scaling-will-slow-down-due-to-increasing-lead-times
https://epoch.ai/gradient-updates/compute-scaling-will-slow-down-due-to-increasing-lead-times
https://axrp.net/episode/2024/10/04/episode-37-jaime-sevilla-forecasting-ai.html
https://epoch.ai/gate
https://epoch.ai/gate
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8.2 Investment and Training Costs

The cost in USD of training frontier models has grown by 3.5x per year per year since 

2020. If trends continue, we’ll see the training cost for a single model approach billion-dollar 

training runs by 2027. The cost breaks down roughly as: 50-65% for hardware (spread across its 

useful life), 30-45% for the researchers and engineers, and 2-6% for electricity. This is venture 

capital and Big Tech money so far, but these numbers are approaching scales where only nations 

or the largest corporations can compete ( Cottier et al., 2025 ).

Figure 59: Breakdown of model development costs for selected models. Hardware costs are amortized 

to the total number of chip-hours spent on experiments and training. R&D staff costs cover the duration 

of development, from initial experiments to publication (,Cottier et al., 2025,).

Figure 60: Hardware and energy cost to train notable AI systems. This data is expressed in US dollars, 

adjusted for inflation (,Our World in Data, 2023,). (interactive version on website)

https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
https://ourworldindata.org/artificial-intelligence
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Figure 61: Amortized hardware cost plus energy cost for the final training run of frontier models. The 

selected models are among the top 10 most compute-intensive for their time. Amortized hardware costs 

are the product of training chip-hours and a depreciated hardware cost, with 23% overhead added for 

cluster-level networking. Open circles indicate costs which used an estimated production cost of Google 

TPU hardware. These costs are generally more uncertain than the others, which used actual price data 

rather than estimates (,Cottier et al., 2025,).

The acquisition cost in USD of the hardware used to train frontier AI models has grown 

by 2.5x per year since 2016. To give you a sense of how much training a frontier model costs, 

the total amortized cost of developing Grok-4 (released in July 2025), including hardware and 

electricity, is estimated at $480 million USD. The acquisition cost of the hardware to train Grok-3, 

including GPUs, other server components, and networking, is estimated at $3 billion USD. The 

hardware used to train Grok 4 may have been even more expensive ( Epoch AI, 2025 ).

Figure 62: Money put into privately held AI companies by private investors. This excludes publicly 

traded companies (e.g., Big Tech companies) and companies’ internal spending, such as R&D or 

infrastructure. Expressed in US dollars, adjusted for inflation (,Our World in Data, 2023,). (interactive 

version on website)

An unknown question is whether the returns to productivity gains will justify continued 

investment. 2025 saw a lot of news headlines about circular investment and an “AI bubble”. If 

https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
https://epoch.ai/trends
https://ourworldindata.org/artificial-intelligence
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AI can automate significant portions of cognitive work, capturing even a fraction of the global 

labor market makes trillion-dollar investments rational. However, massive investments face increasing 

hurdles due to structural constraints. As compute scales up, the lead time between project initiation 

and deployment lengthens significantly—roughly one year for every ten-fold increase in scale—

creating a feedback loop that naturally slows the pace of scaling ( Edelman & Ho, 2025 ). 

This uncertainty regarding long-term returns over extended periods may drive investors to prefer 

incremental scaling, breaking up projects into smaller chunks to gauge returns before committing 

further, rather than making massive upfront investments ( Edelman & Ho, 2025 ). Several things 

could break the pattern entirely: models hitting a capability ceiling where more compute doesn’t 

help, regulations capping training runs or data center sizes, energy costs making large runs 

uneconomical, or economic recession drying up capital. Each represents a distinct way scaling 

could stop independent of technical feasibility.

Figure 63: A forecast using the Growth and AI Transition Endogenous (GATE) playground. GATE 

predicts high levels of investment in AI-related capital and R&D to support massive expansions of the 

effective compute stock. This involves major reallocations away from conventional capital investments 

and consumption, and occurs before AI generates significant economic value, motivated by the large 

payoffs from AI automation. The red line showcases aggressive parameter settings, green is conservative 

parameter settings. The red zone highlights the difference in timelines to full automation between 

aggressive and conservative models (,Epoch AI, 2025,).

https://epoch.ai/gradient-updates/compute-scaling-will-slow-down-due-to-increasing-lead-times
https://epoch.ai/gradient-updates/compute-scaling-will-slow-down-due-to-increasing-lead-times
https://epoch.ai/gate
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Figure 64: Large investments in AI precede the economic benefits of automation, driven by expectations 

of large future payoffs. At the start of simulations, there is a brief period with substantial AI investment 

but with little generated economic value. However, as automation proceeds the value generated by AI 

grows rapidly, comprising the majority of output within a few years. The GATE model thus captures 

the dynamic where it is worth making major upfront investments to enjoy the value generated by AI. 

The investment is measured as the fraction of yearly economic output that is reinvested in AI, while 

the benefit is measured as the fraction of yearly output that can be attributed to the deployment of 

digital workers. The red line showcases aggressive parameter settings, green is conservative parameter 

settings. The red zone highlights the difference in timelines to full automation between aggressive and 

conservative models (,Epoch AI, 2025,).

8.3 Power Consumption

Training frontier models requires enough electrical power to run a small city. GPT-4′s train­

ing run likely consumed around 50 megawatts, equivalent to powering roughly 40,000 US homes. 

If compute scaling continues at 4-5× per year, frontier training runs will require 4-16 gigawatts by 

2030—matching the Grand Coulee Dam, America’s largest power plant ( You et al., 2025 ).

Energy costs remain small relative to hardware costs but this could change. Currently, 

electricity costs represent only 2-6% of total training costs, with hardware and labor dominating 

the budget ( Cottier et al., 2024 ). But if training runs scale to 10+ gigawatts while hardware 

efficiency improvements slow down, energy could become a much larger fraction of costs. At $0.05 

per kilowatt-hour, a 10 GW training run running for 100 days costs roughly $120 million just for 

electricity. That’s still less than the hardware, but it’s no longer negligible. And in practice, securing 

multi-gigawatt power supplies might cost significantly more than wholesale electricity rates suggest.

https://epoch.ai/gate
https://epoch.ai/blog/power-demands-of-frontier-ai-training
https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
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Figure 65: Historic trend and forecast for the electricity demand of the largest individual frontier 

training runs (,You et al., 2025,).

Figure 66: The projected power consumption for planned frontier datacenters for selected AI compa

nies (,Epoch AI, 2025,).

Scaling AI systems to the forecasted levels of 2030 will require substantial power infra

structure. A training run of 2 × 1029 FLOP would require approximately 6 GW of power, assuming 

improvements in hardware efficiency. This scale necessitates data center campuses ranging from 1 

to 5 GW by the end of the decade ( Sevilla et al., 2024 ). Lead times increase with scale: every 

additional 10× increase in compute stock adds roughly one year to project timelines. Constructing 

the necessary large-scale power plants typically takes 2-3 years ( Edelman & Ho, 2025 ). Despite 

these hurdles, the cost of power remains a small fraction of data center expenses—roughly one-

https://epoch.ai/blog/power-demands-of-frontier-ai-training
https://epoch.ai/data/data-centers
https://epoch.ai/blog/can-ai-scaling-continue-through-2030
https://epoch.ai/gradient-updates/compute-scaling-will-slow-down-due-to-increasing-lead-times
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tenth the cost of the chips - making the capital investment rational given the potential returns ( Ho 

et al., 2025 ).

Figure 67: Total electricity generated in each country or region, measured in terawatt-hours (,Our 

World in Data, 2024,). (interactive version on website)

Figure 68: The levelized cost of energy (LCOE) accounts for everything, the cost of building the power 

plant, plus the ongoing costs in keeping it operational over the lifetime of the plant. The cost of energy 

generation per watt has been falling for decades, and even more dramatically for renewable sources 

(,Our World in Data, 2026,). (interactive version on website)

https://epoch.ai/gradient-updates/is-almost-everyone-wrong-about-americas-ai-power-problem
https://epoch.ai/gradient-updates/is-almost-everyone-wrong-about-americas-ai-power-problem
https://ourworldindata.org/energy-production-consumption
https://ourworldindata.org/energy-production-consumption
https://ourworldindata.org/grapher/levelized-cost-of-energy
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9. Appendix: Takeoff

9.1 Continuity

Continuity describes whether AI capabilities improve smoothly and predictably or through 

sudden, unexpected jumps. This is different from speed - even a fast takeoff could be continuous 

if the rapid progress follows predictable patterns, and a slow takeoff could be discontinuous if 

it involves surprising breakthroughs. Understanding continuity helps us predict whether we can 

extrapolate from current trends, like the scaling laws we discussed earlier, or if we should expect 

sudden departures from these patterns. So if you think of speed as a measure of how quickly the 

AI becomes superintelligent, continuity can be thought of as a measure of “surprise”.

In a continuous takeoff, AI capabilities follow smooth, predictable trends. The improvements 

we’ve seen in language models provide a good example - each new model tends to be somewhat 

better than the last at tasks like coding or math, following patterns we can roughly predict from 

scaling laws and algorithmic improvements. As we saw in the forecasting section, many aspects of 

AI progress have shown this kind of predictable behavior.

Continuous progress doesn’t mean linear or simple progress. It might still involve exponential 

or even superexponential growth, but the key is that this growth follows patterns we can anticipate. 

Think of how GPT-4 is better than GPT-3, which was better than GPT-2 - each improvement 

was significant but not completely surprising given the increase in scale and improved training 

techniques.

A continuous takeoff suggests that current trends in scaling laws and algorithmic progress 

might extend even to transformative AI systems. This would give us more warning about 

upcoming capabilities and more ability to prepare appropriate safety measures. As we’ll discuss in 

the governance chapter, even though progress is fast, this kind of predictability makes it compara­

tively easier to develop and implement regulation before AI systems become extremely powerful or 

uncontrollable. Keeping in mind of course that comparatively easier does not mean “easy”.

A discontinuous takeoff involves sudden jumps in capability that break from previous 

patterns. Instead of steady improvements in performance as we add compute or data, we might 

see the emergence of entirely new capabilities that weren’t predicted by existing trends. One 

hypothetical example would be if an AI system suddenly developed robust general reasoning 

capabilities after appearing to only handle narrow tasks - this would represent a discontinuity in 

the pattern of AI development. The terms ‘fast takeoff’ and ‘discontinuous takeoff’ are often used 

interchangeably. However, the images below displaying different takeoff trajectories might help in 

clarifying the subtle differences between the concepts.

Discontinuities could arise through various mechanisms. We might discover fundamentally new 

training approaches that are dramatically more efficient than current methods. Or, we might hit 

tipping points for emergent capabilities - where quantitative improvements in scale lead to qualitative 

changes in capability. An AI system might even discover such improvements about itself, leading 

to unexpected jumps in capability.

The historical record provides some precedent for both continuous and discontinuous 

scientific progress. The development of nuclear weapons represented a discontinuous jump 

in explosive power, while improvements in computer processing power have followed more 
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continuous trends. However, as we saw in the forecasting section, technological discontinuities 

have historically been rare, which some researchers cite as evidence favoring continuous takeoff 

scenarios.

Figure 69: One example illustration of slow discontinuous takeoff, where even though progress keeps 

increasing we might see sudden ‘jumps’ in progress (,Martin & Eth, 2021,).

9.2 Homogeneity

Homogeneity describes how similar or different AI systems are to each other during the 

takeoff period. Will we see many diverse AI systems with different architectures and capabilities, 

or will most advanced AI systems be variations of the same basic design? This isn’t just about 

technical diversity - it’s about whether advanced AI systems will share similar behaviors, limitations, 

and safety properties ( Hubinger, 2020 ).

In a homogeneous takeoff, most advanced AI systems would be fundamentally similar. We 

can see hints of this pattern today - many current language models are based on the transformer 

architecture and trained on similar data, leading to similar capabilities and limitations. In a homoge­

neous takeoff, this pattern would continue. Perhaps most AI systems would be fine-tuned versions 

of a few base models, or different implementations of the same core breakthrough in AI design.

https://www.alignmentforum.org/posts/pGXR2ynhe5bBCCNqn/takeoff-speeds-and-discontinuities
https://www.alignmentforum.org/posts/mKBfa8v4S9pNKSyKK/homogeneity-vs-heterogeneity-in-ai-takeoff-scenarios
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A factor that could drive homogeneity is the sheer scale required to train advanced AI 

systems. If training transformative AI requires massive compute resources, as scaling laws suggest, 

then only a few organizations might be capable of training base models from scratch. Other 

organizations would build on these base models rather than developing entirely new architectures, 

leading to more homogeneous systems.

Homogeneous takeoff could be safer in some ways but riskier in others. If we solve 

alignment for one AI system, that solution might work for other similar systems. However, if there’s 

a fundamental flaw in the common architecture or training approach, it could affect all systems 

simultaneously. It’s like having a monoculture in agriculture - while easier to manage, it’s also more 

vulnerable to shared weaknesses.

Figure 70: An illustration of homogeneous takeoff. We can see multiple different overarching model 

architectures. The figure shows three in different colors. Within each architecture the takeoff is roughly 

the same due to similarity in design, regulations, and safety mitigations. ,NOTE,: The curves here with 

architectures are purely illustrative, and are not meant to indicate predicted growth trajectories and 

comparisons between different architectures.

A heterogeneous takeoff is when we see significant architectural diversity among 

advanced AI systems. Different organizations might develop fundamentally different approaches 

to AI, leading to systems with distinct strengths, weaknesses, and behaviors. Some might be spe­

cialized for specific domains while others are more general, some might be more transparent while 

others are more opaque, some might be more aligned with human values while others might not 

be. Competitive dynamics among AI projects could exacerbate diversity, as teams race to achieve 

breakthroughs without necessarily aligning on methodologies or sharing crucial information. As an 

example, we might have a future where AI becomes a strategic national asset, and AI development is 
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closely guarded. In this environment, the pursuit of AI capabilities becomes siloed, each company 

or country would then employ different development methodologies, potentially leading to a wide 

range of behaviors, functionalities, and safety levels.

Heterogeneous takeoff creates different challenges for safety. We’d need to develop safety measures 

that work across diverse systems, and we couldn’t necessarily apply lessons learned from one system 

to others. However, diversity might provide some protection against systemic risks - if one approach 

proves dangerous, alternatives would still exist.

The degree of homogeneity during takeoff has significant implications for how transformative AI 

might develop. In a homogeneous scenario, progress might be more predictable but also more 

prone to winner-take-all dynamics. A heterogeneous scenario might be more robust against single 

points of failure but harder to monitor and control.

Figure 71: One example of heterogeneous takeoff. We can see multiple different overarching model 

architectures. The figure shows three in different colors. Within each architecture the takeoff is different 

due to differences in design, regulations, and safety mitigations. ,NOTE,: The curves here with 

architectures are purely illustrative, and are not meant to indicate predicted growth trajectories and 

comparisons between different architectures.

9.3 Polarity

Polarity describes whether power and capability becomes concentrated in a single AI 

system or organization, or remains distributed among multiple actors. In other words, will 

one AI system or group pull dramatically ahead of all others, or will multiple AI systems advance in 

parallel with comparable capabilities?
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In a unipolar takeoff, one AI system or organization gains a decisive lead over all others. 

This could happen through a single breakthrough, exceptional scaling advantages, or recursive self-

improvement. For example, if one AI system becomes capable enough to substantially accelerate its 

own development, it might rapidly outpace all other systems. The mathematics of training compute 

provide one path to a unipolar outcome. If a doubling of compute leads to reliable improvements 

in capability, then an organization that gets far enough ahead in acquiring compute could maintain 

or extend their lead. Their improved systems could then help them develop even better training 

methods, hardware, and attract investment creating a positive feedback loop that others can’t match. 

But compute isn’t the only path to unipolarity. A single organization might discover a fundamentally 

better training approach, or develop an AI system that’s better at improving itself than at helping 

humans build alternatives. Once any actor gets far enough ahead, it might become practically 

impossible for others to catch up.

Figure 72: An illustration of unipolar takeoff. One model (dark blue here) significantly outperforms all 

others.

In a multipolar takeoff, multiple AI systems or organizations develop advanced capabilities 

in parallel. This could look like several large labs developing different but comparably powerful AI 

systems, or like many actors having access to similar AI capabilities through open source models 

or AI services. Today’s AI landscape shows elements of multipolarity - multiple organizations can 

train large language models, and techniques developed by one lab are often quickly adopted by 
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others. A multipolar takeoff might continue this pattern, with multiple groups maintaining similar 

capabilities even as those capabilities become transformative. A unipolar scenario raises concerns 

about the concentration of power, while a multipolar world presents challenges in coordination 

among diverse entities or AI systems. Both unipolar and multipolar worlds have the potential for 

misuse of advanced AI capabilities by human actors.

Figure 73: An illustration of multipolar takeoff. No model significantly outperforms all others, and they 

all takeoff at a roughly competitive rate relative to each other.

In a unipolar scenario, the actions and alignment of a single system or organization become crucial 

- they might gain the ability to shape the long-term future unilaterally. This concentrates risk in a 

single point of failure, but might also make coordination easier since fewer actors need to agree. A 

multipolar scenario creates different challenges. Multiple advanced systems might act in conflicting 

ways or compete for resources. This could create pressure to deploy systems quickly or cut corners 

on safety. There’s also an important interaction between polarity and the other aspects of takeoff 

we’ve discussed. A fast takeoff might be more likely to become unipolar, as the first system to make 

rapid progress could quickly outpace all others. A slow takeoff might tend toward multipolarity, 

giving more actors time to catch up to any initial leads.

Factors Influencing Polarity . Several key elements influence whether takeoff polarity leans 

towards a unipolar or multipolar outcome:
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10. Appendix: Expert Surveys

Figure 74: Views about AI’s impact on society in the next 20 years, 2021. Survey respondents were 

asked, “Will artificial intelligence help or harm people in the next 20 years?” (,Giattino et al., 2023,). 

(interactive version on website)

Figure 75: Views of Americans about robot vs. human intelligence. Survey respondents were asked, 

“Which ONE, if any, of the following statements do you MOST agree with?” (,Giattino et al., 2023,). 

(interactive version on website)

10.1 Surveys

According to a recent survey conducted by AI Impact ( AI Impacts, 2022 ): “ Expected time 

to human-level performance dropped 1–5 decades since the 2022 survey . As always, our 

questions about ‘high-level machine intelligence’ (HLMI) and ‘full automation of labor’ (FAOL) got 

very different answers, and individuals disagreed a lot (shown as thin lines below), but the aggregate 

https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/artificial-intelligence
https://aiimpacts.org/wp-content/uploads/2023/04/Thousands_of_AI_authors_on_the_future_of_AI.pdf
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forecasts for both sets of questions dropped sharply. For context, between 2016 and 2022 surveys, 

the forecast for HLMI had only shifted about a year.”
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Figure 76: 2024 Survey of AI Experts (,AI Impacts, 2022,)

https://blog.aiimpacts.org/p/2023-ai-survey-of-2778-six-things
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It is also possible to compare the predictions of the same study in 2022 to the current results. It 

is interesting to note that the community has generally underestimated the speed of progress over 

the year 2023 and has adjusted its predictions downward. Some predictions are quite surprising. 

For example, tasks like “Write High School Essay” and “Transcribe Speech” are arguably already 

automated with ChatGPT and Whisper, respectively. However, it appears that researchers are not 

aware of these results. Additionally, it is surprising that the forecast for when we are able to build an 

“AI researcher” has longer timelines than when we are able to build “High-level machine intelligence 

(all human tasks)”. The median of the 2024 expert survey predicts human-level machine intelligence 

(HLMI) in 2049.

10.2 Quotes

Here are many quotes from people regarding transformative AI.

10.2.1 AI Experts

Note that Hinton, Bengio, and Sutskever are some of the most cited researchers in the field of AI. 

And that Hinton, Bengio, and LeCun are the recipients of the Turing Award in Deep Learning . Some 

users on reddit have put together a comprehensive list of publicly stated AI timelines forecasts from 

famous researchers and industry leaders.

The research question is: how do you prevent them from ever wanting to take 

control? And nobody knows the answer […] The alarm bell I’m ringing has to do 

with the existential threat of them taking control […] If you take the existential risk 

seriously, as I now do, it might be quite sensible to just stop developing these things 

any further […] it’s as if aliens had landed and people haven’t realized because 

they speak very good English.

Geoffrey Hinton
Godfather of modern AI, Turing Award Recipient

It’s very hard, in terms of your ego and feeling good about what you do, to accept 

the idea that the thing you’ve been working on for decades might actually be very 

dangerous to humanity… I think that I didn’t want to think too much about it, and 

that’s probably the case for others […] Rogue AI may be dangerous for the whole 

of humanity. Banning powerful AI systems (say beyond the abilities of GPT-4) that 

are given autonomy and agency would be a good start.
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Yoshua Bengio
One of most cited scientists ever, Godfather of modern AI, Turing Award Recipient

If we pursue [our current approach], then we will eventually lose control over the 

machines.

Stuart Russell
Co-Author of leading AI textbook, Co-Founder of the Center for Human-Compatible AI

We must take the risks of AI as seriously as other major global challenges, like 

climate change. It took the international community too long to coordinate an 

effective global response to this, and we’re living with the consequences of that 

now. We can’t afford the same delay with AI […] then maybe there’s some kind of 

equivalent one day of the IAEA, which actually audits these things.

Demis Hassabis
Co-Founder and CEO of DeepMind

When I think of why am I scared […] I think the thing that’s really hard to argue with 

is like, there will be powerful models; they will be agentic; we’re getting towards 

them. If such a model wanted to wreak havoc and destroy humanity or whatever, 

I think we have basically no ability to stop it.

Dario Amodei
Co-Founder and CEO of Anthropic, Former Head of AI Safety at OpenAI
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[About a Pause] I don’t rule it out. And I think that at some point over the next five 

years or so, we’re going to have to consider that question very seriously.

Mustafa Suleyman
CEO of Microsoft AI, Co-Founder of DeepMind

The future is going to be good for the AIs regardless; it would be nice if it would 

be good for humans as well […] It’s not that it’s going to actively hate humans 

and want to harm them, but it’s just going to be too powerful, and I think a good 

analogy would be the way humans treat animals […] And I think by default that’s 

the kind of relationship that’s going to be between us and AGIs which are truly 

autonomous and operating on their own behalf.

Ilya Sutskever
One of the most cited scientists ever, Co-Founder and Former Chief Scientist at OpenAI

Do possible risks from AI outweigh other possible existential risks…? It’s my number 

1 risk for this century […] A lack of concrete AGI projects is not what worries me, 

it’s the lack of concrete plans on how to keep these safe that worries me.

Shane Legg

[After resigning at OpenAI, talking about sources of risks] These problems are quite 

hard to get right, and I am concerned we aren’t on a trajectory to get there […] 

OpenAI is shouldering an enormous responsibility on behalf of all of humanity. But 

over the past years, safety culture and processes have taken a backseat to shiny 
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products. We are long overdue in getting incredibly serious about the implications 

of AGI.

Jan Leike
Former co-lead of the Superalignment project at OpenAI

[Suggesting about how to ask for a global regulatory body:] “any compute cluster 

above a certain extremely high-power threshold – and given the cost here, we’re 

talking maybe five in the world, something like that – any cluster like that has to 

submit to the equivalent of international weapons inspectors” […] I did a big trip 

around the world this year, and talked to heads of state in many of the countries 

that would need to participate in this, and there was almost universal support for it.

Sam Altman
Co-Founder and CEO of OpenAI

The exact way the post-AGI world will look is hard to predict — that world will likely 

be more different from today’s world than today’s is from the 1500s […] We do 

not yet know how hard it will be to make sure AGIs act according to the values of 

their operators. Some people believe it will be easy; some people believe it’ll be 

unimaginably difficult; but no one knows for sure.

Greg Brockman
Co-Founder and Former CTO of OpenAI

[Talking about times near the creation of the first AGI] you have the race dynamics 

where everyone’s trying to stay ahead, and that might require compromising on 
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safety. So I think you would probably need some coordination among the larger 

entities that are doing this kind of training […] Pause either further training, or 

pause deployment, or avoiding certain types of training that we think might be 

riskier.

John Schulman
Co-Founder of OpenAI

I’ve not met anyone in AI labs who says the risk [from training a next-gen model] 

is less than 1% of blowing up the planet. It’s important that people know lives are 

being risked […] One thing that a pause achieves is that we will not push the 

Frontier, in terms of risky ,pre-training, experiments.

Jaan Tallinn
Co-Founder of Skype, Future of Life Institute

10.2.2 Academics

An ultraintelligent machine could design even better machines; there would then 

unquestionably be an ‘intelligence explosion’, and the intelligence of man would 

be left far behind. Thus the first ultraintelligent machine is the last invention that 

man need ever make, provided that the machine is docile enough to tell us how to 

keep it under control.

I. J. Good
Cryptologist at Bletchley Park
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It seems probable that once the machine thinking method had started, it would not 

take long to outstrip our feeble powers… They would be able to converse with each 

other to sharpen their wits. At some stage therefore, we should have to expect the 

machines to take control.

Alan Turing
Father of Computer Science and AI

The development of full artificial intelligence could spell the end of the human race 

[…] It would take off on its own, and re-design itself at an ever increasing rate.

Stephen Hawking
Theoretical Physicist

I do not expect something actually smart to attack us with marching robot armies 

with glowing red eyes where there could be a fun movie about us fighting them. 

I expect an actually smarter and uncaring entity will figure out strategies and 

technologies that can kill us quickly and reliably and then kill us.

Eliezer Yudkowsky
AI safety researcher, Co-Founder of Machine Intelligence Research Institute

10.2.3 Tech Entrepreneurs

AI is a rare case where I think we need to be proactive in regulation than be 

reactive […] I think that [digital super intelligence] is the single biggest existential 

crisis that we face and the most pressing one. It needs to be a public body that 
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has insight and then oversight to confirm that everyone is developing AI safely […] 

And mark my words, AI is far more dangerous than nukes. Far. So why do we have 

no regulatory oversight? This is insane.

Elon Musk
Founder/Co-Founder of OpenAI, Neuralink, SpaceX, xAI, PayPal, CEO of Tesla, CTO of X/Twitter

Superintelligent AIs are in our future. […] There’s the possibility that AIs will run out 

of control. [Possibly,] a machine could decide that humans are a threat, conclude 

that its interests are different from ours, or simply stop caring about us.

Bill Gates
Co-Founder of Microsoft

10.2.4 Joint Declarations

Substantial risks may arise from potential intentional misuse or unintended issues 

of control relating to alignment with human intent. These issues are in part because 

those capabilities are not fully understood […] There is potential for serious, even 

catastrophic, harm, either deliberate or unintentional, stemming from the most 

significant capabilities of these AI models.

The Bletchley Declaration
Multiple Nations & EU

2023
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11. Appendix: Discussion on LLMs

Current LLMs, although trained on abundant data, are still far from perfect.

Will these problems persist in future iterations, or will they disappear? This section examines the 

main criticisms of those models and tries to determine if they are valid even for future LLMs.

This kind of qualitative assessment is important to know whether LLMs represent the most likely route 

to AGI or not.

11.1 Empirically insufficiency?

Can LLMs be creative? The creativity of LLMs is often debated, but there are clear indications 

that AI, in principle, is capable of creative processes in various ways:

Aren’t LLMs just too slow at learning things? Arguments against transformer based language 

models often state that they are too sample inefficient, and that LLMs are extremely slow to learn 

new concepts when compared to humans. To increase performance in new tasks or situations, it’s 

often argued that LLMs require training on vast amounts of data — millions of times more than a 

human would need. However, there’s a growing trend towards data efficiency, and an increasing 

belief that this can be significantly improved in future models.

EfficientZero is a reinforcement learning agent that surpasses median human performance on a set 

of 26 Atari games after just two hours of real-time experience per game ( Ye et al., 2021 ; Wang et 

al., 2024 ). This is a considerable improvement over previous algorithms, showcasing the potential 

leaps in data efficiency. The promise here is not just more efficient learning but also the potential 

for rapid adaptation and proficiency in new tasks, akin to a child’s learning speed. EfficientZero is 

not an LLM, but it shows that deep learning can sometimes be made efficient.

Scaling laws indicate that larger AIs tend to be more data efficient, requiring less data to reach 

the same level of performance as their smaller counterparts. Papers such as “Language Models 

are Few-Shot Learners” ( Brown et al., 2020 ) and the evidence that larger models seem to take 

less data to reach the same level of performance ( Kaplan et al., 2020 ), suggest that as models 

scale, they become more proficient with fewer examples. This trend points towards a future where 

AI might be able to rapidly adapt and learn from limited data, challenging the notion that AIs are 

inherently slow learners compared to humans.

Are LLMs robust to distributional shifts? While it is true that AI has not yet achieved maximal 

robustness, for example being able to perform perfectly after a change in distribution, there has 

been considerable progress:

11.2 Shallow Understanding?

Stochastic Parrots: Do AIs only memorize information without truly compressing it? There 

are two archetypal ways to represent information in an LLM: either memorize point by point, like 

a look-up table, or compress the information by only memorizing higher-level features, which we 

can then call “the world model”. This is explained in the very important paper “Superposition, 

Memorization, and Double Descent” ( Anthropic, 2023 ): it turns out that to store points, initially the 

model learns the position of all the points (pure memorization), then, if we increase the number of 

https://arxiv.org/abs/2111.00210
https://arxiv.org/abs/2403.00564
https://arxiv.org/abs/2403.00564
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2001.08361
https://transformer-circuits.pub/2023/toy-double-descent/index.html
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points, the model starts to compress this knowledge, and the model is now capable of generalization 

(and implements a simple model of the data).

Unfortunately, too few people understand the distinction between memorization 

and understanding. It’s not some lofty question like ‘does the system have an 

internal world model?’, it’s a very pragmatic behavior distinction: ‘is the system 

capable of broad generalization, or is it limited to local generalization?’

Francois Chollet
Prominent AI Researcher

Chollet, 2023

Figure 77: From Superposition, Memorization, and Double Descent (,Anthropic, 2023,)

AI is capable of compressing information, often in a relevant manner. For example, when examining 

the representations of words representing colors in LLMs like “red” and “blue”, the structure 

https://x.com/fchollet/status/1736079054313574578?s=20
https://transformer-circuits.pub/2023/toy-double-descent/index.html
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formed by all the embeddings of those colors creates the correct color circle (This uses a nonlinear 

projection such as a T-distributed stochastic neighbor embedding (T-SNE) to project from high-

dimensional space to the 2D plane). Other examples of world models are presented in a paper 

called “Eight Things to Know about Large Language Models” ( Bowman, 2023 ).

Of course, there are other domains where AI resembles more of a look-up table, but it is a spectrum, 

and each case should be examined individually. For example, for “factual association,” the paper 

“Locating and Editing Factual Associations in GPT” shows that the underlying data structure for 

GPT-2 is more of a look-up table ( Meng et al., 2023 ), but the paper “Emergent Linear Represen­

tations in World Models of Self-Supervised Sequence Models” demonstrates that a small GPT is 

capable of learning a compressed world model of OthelloGpt. ( Nanda et al., 2023 ) There are 

more examples in the section dedicated to world models in the paper “Eight Things to Know about 

Large Language Models” ( Bowman, 2023 ).

It’s clear that LLMs are compressing their representations at least a bit. Many examples of impressive 

capabilities are presented in the work “The Stochastic Parrot Hypothesis is debatable for the last 

generation of LLMs”, which shows that it cannot be purely a memorization. ( Feuillade-Montixi & 

Peigné, 2023 )

Will LLMs Inevitably Hallucinate?

LLMs are prone to “hallucinate,” a term used to describe the generation of content that is nonsensical 

or factually incorrect in response to certain prompts. This issue, highlighted in studies such as “On 

Faithfulness and Factuality in Abstractive Summarization” by Maynez et al. ( Maynez et al., 2020 ) 

and “TruthfulQA: Measuring How Models Mimic Human Falsehoods” by Lin et al. ( Lin et al., 2022 ), 

poses a significant challenge. However, it’s important to see that these challenges are anticipated 

due to the training setup and can be mitigated:

Many techniques can be used to increase the truthfulness of LLMs

OPTIONAL NOTE

Fine-tuning, LLMs for Factuality:, In this paper (,Tian et al., 2023,), the authors recommend ,fine-tuning, 

methods using Direct Preference Optimization (DPO) to decrease the rate of hallucinations. By applying 

such techniques, a 7B Llama 2 model saw a 58% reduction in factual error rate compared to its original 

model.Retrieval Augmented Generation (RAG),. This method works by incorporating a process of 

looking up real-world information (retrieval, like a Google search) and then using that information to guide 

the AI’s responses (generation, based on the document retrieved). By doing so, the AI is better anchored 

in factual reality, reducing the chances of producing unrealistic or incorrect content. Essentially, it’s like 

giving the AI a reference library to check facts against while it learns and responds, ensuring its output is 

more grounded in reality. This approach is particularly useful in the context of ,in-context learning,, where 

the AI learns from the information and context provided in each interaction.Prompting techniques, in 

AI have evolved to include sophisticated methods likeProcess-based training, ensures that the systems 

are accustomed to detailing their thoughts in much greater detail and not being able to skip too many 

reasoning steps. For example, see OpenAI’s Improving Mathematical Reasoning with process supervision 

(,Lightman et al., 2023,).Training for metacognition,: Models can be trained to give the probability of what 

they assert, a form of metacognition. For example, the paper “Language Models (Mostly) Know What They 

Know” (,Kadavath et al., 2022,) demonstrates that AIs can be Bayesian calibrated about their knowledge. 

This implies that they can have a rudimentary form of self-awareness, recognizing the likelihood of their 

https://arxiv.org/abs/2304.00612
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2309.00941
https://arxiv.org/abs/2304.00612
https://www.lesswrong.com/posts/HxRjHq3QG8vcYy4yy/the-stochastic-parrot-hypothesis-is-debatable-for-the-last
https://www.lesswrong.com/posts/HxRjHq3QG8vcYy4yy/the-stochastic-parrot-hypothesis-is-debatable-for-the-last
https://arxiv.org/abs/2005.00661
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2311.08401
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own accuracy. Informally, this means it is possible to query a chatbot with “Are you sure about what you are 

telling me?” and receive a relatively reliable response. This can serve as training against hallucinations.It’s 

worth noting that these techniques enable substantial problem mitigation for the current LLMs, but they don’t 

solve all the problems that we encounter with AI that are potentially deceptive, as we will see in the chapter 

on goal misgeneralization.

11.3 Structural inadequacy?

Are LLMs missing System 2? System 1 and System 2 are terms popularized by economist Daniel 

Kahneman in his book “Thinking, Fast and Slow,” describing the two different ways our brains form 

thoughts and make decisions. System 1 is fast, automatic, and intuitive; it’s the part of our thinking 

that handles everyday decisions and judgments without much effort or conscious deliberation. For 

example, when you recognize a face or understand simple sentences, you’re typically using System 

1. On the other hand, System 2 is slower, more deliberative, and more logical. It takes over when 

you’re solving a complex problem, making a conscious choice, or focusing on a difficult task. 

It requires more energy and is more controlled, handling tasks such as planning for the future, 

checking the validity of a complex argument, or any activity that requires deep focus. Together, 

these systems interact and influence how we think, make judgments, and decide, highlighting the 

complexity of human thought and behavior.

A key concern is whether LLMs are able to emulate System 2 processes, which involve slower, more 

deliberate, and logical thinking. Some theoretical arguments about the depth limit in transformers 

show that they are provably incapable of internally dividing large integers ( Delétang et al., 2023 ). 

However, this is not what we observe in practice: GPT-4 is capable of detailing some calculations 

step-by-step and obtaining the expected result through a chain of thought or via the usage of tools 

like a code interpreter.

Emerging Metacognition . Emerging functions in LLMs, like the Reflexion technique ( Shinn et 

al., 2023 ), allow these models to retrospectively analyze and improve their answers. It is possible 

to ask the LLM to take a step back, question the correctness of its previous actions, and consider 

ways to improve the previous answer. This greatly enhances the capabilities of GPT-4, enhancing 

its capabilities and aligning them more closely with human System 2 operations. Note that this 

technique is emergent and does not work well with previous models.

These results suggest a blurring of the lines between these two systems. System 2 processes may 

be essentially an assembly of multiple System 1 processes, appearing slower due to involving more 

steps and interactions with slower forms of memory. This perspective is paralleled in how language 

models operate, with each step in a System 1 process akin to a constant time execution step in 

models like GPT. Although these models struggle with intentionally orchestrating these steps to solve 

complex problems, breaking down tasks into smaller steps (Least-to-most prompting) or prompting 

them for incremental reasoning (Chain-of-Thought (CoT) prompting) significantly improves their 

performance.

Are LLMs missing an internal world model? The notion of a “world model” in AI need not be 

confined to explicit encoding within an architecture. Contrary to approaches like H-JEPA ( LeCun, 

2022 ), which advocate for an explicit world model to enhance AI training, there’s growing evidence 

that a world model can be effectively implicit. This concept is particularly evident in reinforcement 

https://arxiv.org/abs/2207.02098
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://openreview.net/pdf?id=BZ5a1r-kVsf
https://openreview.net/pdf?id=BZ5a1r-kVsf
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learning (RL), where the distinction between model-based and model-free RL can be somewhat 

misleading. Even in model-free RL, algorithms often implicitly encode a form of a world model that 

is crucial for optimal performance.

Can LLMs learn continuously, and have long term memory? Continual learning and the 

effective management of long-term memory represent significant challenges in the field of AI in 

general.

Catastrophic Forgetting . A crucial obstacle in this area is catastrophic forgetting, a phenomenon 

where a neural network , upon learning new information, tends to entirely forget previously learned 

information. This issue is an important focus of ongoing research, aiming to develop AI systems 

that can retain and build upon their knowledge over time. For example, suppose we train an AI on 

an Atari game. At the end of the second training, the AI has most likely forgotten how to play the 

first game. This is an example of catastrophic forgetting.

But now suppose we train a large AI on many ATARI games, simultaneously, and even add some 

Internet text and some robotic tasks. This can just work. For example, the AI GATO illustrates this 

training process and exemplifies what we call the blessing of scale , which is that what is impossible 

in small regimes can become possible in large regimes.

Other techniques are being developed to solve long-term memory, for example, Scaffolding-based 

approaches have also been employed for achieving long-term memory and continual learning in 

AI. Scaffolding in AI refers to the use of hard-coded wrappers explicitly programmed structures by 

humans that involve a for loop to query continuously the model:

It should be noted that scaffold-based long-term memory is not considered an elegant solution, and 

purists would prefer to use the system’s own weights as long-term memory.

Planning

Planning is an area that AIs currently struggle with, but there is significant progress. Some 

paradigms, such as those based on scaffolding, enable task decomposition and breaking down 

objectives into smaller, more achievable sub-objectives.

Furthermore, the paper “Voyager: An Open-Ended Embodied Agent with Large Language Models” 

demonstrates that it is possible to use GPT-4 for planning in Natural language in Minecraft ( Wang 

et al., 2023 ).

11.4 Differences with the brain

It appears that there are several points of convergence between the LLMs and the linguistic cortex:

11.5 Further reasons to continue scaling LLMs

Following are some reasons to believe that labs will continue to scale LLMs.

Scaling Laws on LLM implies further qualitative improvements. The scaling laws might not 

initially appear impressive. However, linking these quantitative measures can translate to a qualitative 

improvement in algorithm quality. An algorithm that achieves near-perfect loss, though, is one that 

necessarily comprehends all subtleties, and displays enormous adaptability. The fact that the scaling 

laws are not bending is very significant and means that we can make the model a qualitatively better 

reasoner.

https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
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From simple correlations to understanding. During a training run, GPTs go from basic corre­

lations to deeper and deeper understanding. Initially, the model merely establishes connections 

between successive words. Gradually, it develops an understanding of grammar and semantics, 

creating links between sentences and subsequently between paragraphs. Eventually, GPT masters 

the nuances of writing style.

Exercise: Scaling Laws on LLM implies further qualitative improvements

OPTIONAL NOTE

Let’s calculate the difference in loss, measured in bits, between two model outputs: “Janelle ate some ice 

cream because he likes sweet things like ice cream.” and “Janelle ate some ice cream because she likes 

sweet things like ice cream.” The sentence contains approximately twenty tokens. If the model vacillates 

between “He” or “She,” choosing randomly (50/50 odds), it incurs a loss of 2 bits on the pronoun token 

when incorrect. The loss for other tokens remains the same in both models. However, since the model is 

only incorrect half the time, a factor of 1/2 should be applied. This results in a difference of (1/2) * (2/20) 

= 1/20, or 0.05 bits. Thus, a model within 0.05 bits of the minimal theoretical loss should be capable of 

understanding even more nuanced concepts than the one discussed above.

Text completion is probably an AI-complete test ( Wikipedia, 2022 ).

Current LLMs have only as many parameters as small mammals have synapses, no wonder 

they are still imperfect. Models like GPT-4, though very big compared to other models, should 

be noted for their relatively modest scale compared to the size of a human brain. To illustrate, the 

largest GPT-3 model has a similar number of parameters to the synapses of a hedgehog. We don’t 

really know how many parameters GPT-4 has, but if it is the same size as PALM, which has 512 B 

parameters, then GPT-4 has only as many parameters as a chinchilla has synapses. In contrast, the 

human neocortex contains about 140 trillion synapses, which is over 200 times more synapses than 

a chinchilla. For a more in-depth discussion on this comparison, see the related discussion here . 

For a discussion of the number of parameters necessary to emulate a synapse, see the discussion 

on biological anchors.

GPT-4 is still orders of magnitude cheaper than other big science projects. : Despite the 

high costs associated with training large models, the significant leaps in AI capabilities provided 

by scaling justify these costs. For example, GPT-4 is expensive compared to other ML models. 

It is said to cost 50M in training. But the Manhattan Project cost 25B, which is 500 times more 

without accounting for inflation, and achieving Human-level intelligence, may be more economically 

important than achieving the nuclear bomb.

Collectively, these points support the idea that AGI can be achieved by only scaling current 

algorithms.

https://en.wikipedia.org/wiki/AI-complete
https://www.lesswrong.com/posts/YKfNZAmiLdepDngwi/gpt-175bee
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